Micropatterning and Functionalization of Single Layer Graphene: Tuning Its Electron Transport Properties

Cui Miao-Miao , Han Lian-Huan , Zeng Lan-Ping , Guo Jia-Yao , Song Wei-Ying , Liu Chuan , Wu Yuan-Fei , Luo Shi-Yi , Liu Yun-Hua , Zhan Dong-Ping

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (3) : 2305251

PDF (1361KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (3) :2305251 DOI: 10.13208/j.electrochem.2305251
COMMUNICATION
research-article

Micropatterning and Functionalization of Single Layer Graphene: Tuning Its Electron Transport Properties

Author information +
History +
PDF (1361KB)

Abstract

As a promising 2D material, graphene exhibits excellent physical properties including single-atom-scale thickness and remarkably high charge carrier mobility. However, its semi-metallic nature with a zero bandgap poses challenges for its application in high-performance field-effect transistors (FETs). In order to overcome these limitations, various approaches have been explored to modulate graphene's bandgap, including nanoscale confinement, external field induction, doping, and chemical micropatterning. Nevertheless, the stability and controllability still need to be improved. In this study, we propose a feasible method that combines electrochemical bromination and photolithography to precisely tune the electron transport properties of single layer graphene (SLG). Through this method, we successfully fabricated various brominated SLG (SLGBr) micropatterns with high accuracy. Futher investigation revealed that the electron transport properties of SLG can be conveniently tuned by controlling the degree of bromination. The SLGBr exhibited a resistance, and have a decreasing conductance with the bromination degree increasing. When the bromination degree increased to a critical value, the SLGBr demonstrated semiconducting characteristics. This research offers a prospective route for the fabrication of graphene-based devices, providing potential applications in the realm of microelectronics.

Keywords

Graphene patterning / Electron transport / Electrochemical bromination / Photolithography / All graphene device

Cite this article

Download citation ▾
Cui Miao-Miao, Han Lian-Huan, Zeng Lan-Ping, Guo Jia-Yao, Song Wei-Ying, Liu Chuan, Wu Yuan-Fei, Luo Shi-Yi, Liu Yun-Hua, Zhan Dong-Ping. Micropatterning and Functionalization of Single Layer Graphene: Tuning Its Electron Transport Properties. Journal of Electrochemistry, 2024, 30(3): 2305251 DOI:10.13208/j.electrochem.2305251

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kaplan A, Yuan Z, Benck J D, Govind R A, Chu X S, Wang Q H, Strano M S. Current and future directions in electron transfer chemistry of graphene[J]. Chem. Soc. Rev., 2017, 46(15): 4530-4571.

[2]

Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys. Rev. Lett., 2008, 100(1): 016602.

[3]

Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

[4]

Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y. The thermal stability of graphene in air investigated by Raman spectroscopy[J]. J. Raman Spectrosc., 2013, 44(7): 1018-1021.

[5]

He Q Y, Wu S X, Yin Z Y, Zhang H. Graphene-based electronic sensors[J]. Chem. Sci., 2012, 3(6): 1764-1772.

[6]

Biro L P, Nemes-Incze P, Lambin P. Graphene: Nanoscale processing and recent applications[J]. Nanoscale, 2012, 4(6): 1824-1839.

[7]

Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics[J]. Nanoscale, 2015, 7(18): 8261-8283.

[8]

Wei T, Bao L, Hauke F, Hirsch A. Recent advances in graphene patterning[J]. Chempluschem, 2020, 85(8): 1655-1668.

[9]

Wei T, Hauke F, Hirsch A. Evolution of graphene patterning: From dimension regulation to molecular engineering[J]. Adv. Mater., 2021, 33(45): 2104060.

[10]

Zheng Y Q, Wang H, Hou S F, Xia D Y. Lithographically defined graphene patterns[J]. Adv. Mater. Technol., 2017, 2(5): 1600237

[11]

Park J U, Nam S, Lee M S, Lieber C M. Synthesis of monolithic graphene-graphite integrated electronics[J]. Nat. Mater., 2011, 11(2): 120-125.

[12]

Choi J K, Kwak J, Park S D, Yun H D, Kim S Y, Jung M, Kim S Y, Park K, Kang S, Kim S D, Park D Y, Lee D S, Hong S K, Shin H J, Kwon S Y. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene[J]. ACS Nano, 2015, 9(1): 679-686.

[13]

Zhou X B, Qi Y, Shi J P, Niu J J, Liu M X, Zhang G H, Li Q C, Zhang Z P, Hong M, Ji Q Q, Zhang Y, Liu Z F, Wu X S, Zhang Y F. Modulating the electronic properties of monolayer graphene using a periodic quasi-one-dimensional potential generated by hex-reconstructed Au(001)[J]. ACS Nano, 2016, 10(8): 7550-7557.

[14]

Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459(7248): 820-823.

[15]

Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekær L. Bandgap opening in graphene induced by patterned hydrogen adsorption[J]. Nat. Mater., 2010, 9(4): 315-319.

[16]

Wu J, Xie L M, Li Y G, Wang H L, Ouyang Y J, Guo J, Dai H J. Controlled chlorine plasma reaction for noninvasive graphene doping[J]. J. Am. Chem. Soc., 2011, 133(49): 19668-19671.

[17]

Yavari F, Kritzinger C, Gaire C, Song L, Gulapalli H, Borca-Tasciuc T, Ajayan P M, Koratkar N. Tunable bandgap in graphene by the controlled adsorption of water molecules[J]. Small, 2010, 6(22): 2535-2538.

[18]

Elias D C, Nair R R, Mohiuddin T M, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S. Control of graphene's properties by reversible hydrogenation: Evidence for graphane[J]. Science, 2009, 323(5914): 610-613.

[19]

Wei T, Kohring M, Chen M, Yang S, Weber H B, Hauke F, Hirsch A. Highly efficient and reversible covalent patterning of graphene: 2D-management of chemical information[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(14): 5602-5606.

[20]

Zeng L P, Song W Y, Jin X F, He Q F, Han L H, Wu Y F, Lagrost C, Leroux Y, Hapiot P, Cao Y, Cheng J, Zhan D P. Electrochemical regulation of the band gap of single layer graphene: From semimetal to semiconductor[J]. Chem. Sci., 2023, 14(17): 4500-4505.

[21]

Chen D H, Lin Z, Sartin M M, Huang T X, Liu J, Zhang Q G, Han L H, Li J F, Tian Z Q, Zhan D P. Photosynergetic electrochemical synthesis of graphene oxide[J]. J. Am. Chem. Soc., 2020, 142(14): 6516-6520.

[22]

Zhong J H, Zhang J, Jin X, Liu J Y, Li Q, Li M H, Cai W, Wu D Y, Zhan D, Ren B. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene[J]. J. Am. Chem. Soc., 2014, 136(47): 16609-16617.

[23]

Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat. Nanotechnol., 2013, 8(4): 235-246.

[24]

Li W, Li Y Q, Xu K. Facile, electrochemical chlorination of graphene from an aqueous nacl solution[J]. Nano Lett., 2021, 21(2): 1150-1155.

[25]

Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov K S, Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy[J]. Nano Lett., 2012, 12(8): 3925-3930.

[26]

Li B, Zhou L, Wu D, Peng H L, Yan K, Zhou Y, Liu Z F. Photochemical chlorination of graphene[J]. ACS Nano, 2011, 5(7): 5957-5961.

PDF (1361KB)

175

Accesses

0

Citation

Detail

Sections
Recommended

/