Monodispersed Cu-TCPP/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst toward CO2 Reduction to C2 Products

Zi-Xuan Wan , Aidar Kuchkaev , Dmitry Yakhvarov , Xiong-Wu Kang

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (1) : 2303271

PDF (1922KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (1) :2303271 DOI: 10.13208/j.electrochem.2303271
COMMUNICATION
research-article

Monodispersed Cu-TCPP/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst toward CO2 Reduction to C2 Products

Author information +
History +
PDF (1922KB)

Abstract

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress hydrogen evolution, enrich CO intermediate and promote C-C coupling toward C2 products. The Cu-TCPP@Cu supported on porous carbon (PC) showed ultrafine Cu nanoclusters on PC, and displayed high ECR activity and selectivity toward C2 products, with a C2 faradaic efficiency of 62.3% at -1.0 V versus the reversible hydrogen electrode and a C2 partial current density of 83.4 mA·cm-2, which is 7.6 times and 13.1 times those of pure Cu2O and TCPP, respectively. The morphology and hybrid structure of the catalyst were studied to improve the selectivity of ECR to produce C2 products, which provides a new idea for the design of high-performance ECR catalyst.

Keywords

Organic/inorganic hybrid electrocatalysts / TCPP / Cuprous oxide / Cascade electrocatalysts

Cite this article

Download citation ▾
Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang. Monodispersed Cu-TCPP/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst toward CO2 Reduction to C2 Products. Journal of Electrochemistry, 2024, 30(1): 2303271 DOI:10.13208/j.electrochem.2303271

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang W, Shang L, Chang G L, Yan C Y, Shi R, Zhao Y X, Waterhouse G I N, Yang D J, Zhang T R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide[J]. Adv. Mater., 2019, 31(19): 1808276.

[2]

Luo T, Liu K, Fu J, Chen S, Li H, Pan H, Liu M. Electric double layer structure in electrocatalytic carbon dioxide reduction[J]. AESR, 2022, 4(3): 2200148.

[3]

Mu Z Y, Han N, Xu D, Tian B L, Wang F Y, Wang Y Q, Sun Y M, Liu C, Zhang P K, Wu X J, Li Y G, Ding M N. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations[J]. Nat. Commun., 2022, 13(1): 6911.

[4]

Faunce T A, Lubitz W, Rutherford A W, MacFarlane D, Moore G F, Yang P, Nocera D G, Moore T A, Gregory D H, Fukuzumi S, Yoon K B, Armstrong F A, Wasielewski M R, Styring S. Energy and environment policy case for a global project on artificial photosynthesis[J]. Energy Environ. Sci., 2013, 6(3): 695-698.

[5]

Masel R I, Liu Z, Yang H, Kaczur J J, Carrillo D, Ren S, Salvatore D, Berlinguette C P. An industrial perspective on catalysts for low-temperature CO2 electrolysis[J]. Nat. Nanotechnol., 2021, 16(2): 118-128.

[6]

Zhou Y J, Ni G H, Wu K Z, Chen Q, Wang X Q, Zhu W W, He Z, Li H M, Fu J W, Liu M. Porous Zn Conformal coating on dendritic-like Ag with enhanced selectivity and stability for CO2electroreduction to CO[J]. Adv. Sustain. Syst., 2023, 7(1): 2200374.

[7]

De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todorović P, Regier T, Kelley S O, Yang P, Sargent E H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nat. Catal., 2018, 1(2): 103-110.

[8]

Pan B B, Fan J, Zhang J, Luo Y Q, Shen C, Wang C Q, Wang Y H, Li Y G. Close to 90% Single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly[J]. ACS Energy Lett., 2022, 7(12): 4224-4231.

[9]

Wu Y S, Jiang Z, Lu X, Liang Y Y, Wang H L. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642.

[10]

Wang Q, Liu K, Hu K, Cai C, Li H, Li H, Herran M, Lu Y R, Chan T S, Ma C, Fu J, Zhang S, Liang Y, Cortés E, Liu M. Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO[J]. Nat. Commun., 2022, 13(1): 6082.

[11]

Zhao S L, Yang Y C, Tang Z Y. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts[J]. Angew. Chem. Int. Ed., 2022, 61(11): e202110186.

[12]

Liu P X, Peng L W, He R N, Li L L, Qiao J L. A high-performance continuous-flow MEA reactor for electroreduction CO2 to formate[J]. J. Electrochem., 2022, 28(1): 2104231.

[13]

Wang Y R, Yang R X, Chen Y, Gao G K, Wang Y J, Li S L, Lan Y Q. Chloroplast-like porous bismuth-based core-shell structure for high energy efficiency CO2electroreduction[J]. Sci. Bull., 2020, 65(19): 1635-1642.

[14]

Tan D X, Cui C N, Shi J B, Luo Z X, Zhang B X, Tan X N, Han B X, Zheng L R, Zhang J, Zhang J L. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide[J]. Nano Res., 2019, 12(5): 1167-1172.

[15]

Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocatalytic process of Co selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochim. Acta, 1994, 39(11): 1833-1839.

[16]

Deng P L, Yang F, Wang Z T, Chen S H, Zhou Y Z, Zaman S, Xia B Y. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate[J]. Angew. Chem. In. Ed., 2020, 59(27): 10807-10813.

[17]

Li Q, Fu J J, Zhu W L, Chen Z Z, Shen B, Wu L H, Xi Z, Wang T Y, Lu G, Zhu J J, Sun S H. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure[J]. J. Am. Chem. Soc., 2017, 139(12): 4290-4293.

[18]

Gao S, Lin Y, Jiao X C, Sun Y F, Luo Q Q, Zhang W H, Li D Q, Yang J L, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71.

[19]

Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angew. Chem. Int. Ed., 2017, 56(38): 11326-11353.

[20]

Han S G, Ma D D, Zhu Q L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction[J]. Small Methods, 2021, 5(8): 2100102.

[21]

Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q. Recent advances in porous polyoxometalate-based metal-organic framework materials[J]. Chem. Soc. Rev., 2014, 43(13): 4615-4632.

[22]

Qin J S, Du D Y, Guan W, Bo X J, Li Y F, Guo L P, Su Z M, Wang Y Y, Lan Y Q, Zhou H C. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water[J]. J. Am. Chem. Soc., 2015, 137(22): 7169-7177.

[23]

Peng C, Zhu X, Xu Z, Yan S, Chang L Y, Wang Z, Zhang J, Chen M, Sham T K, Li Y, Zheng G. Lithium vacancy-tuned [CuO4] sites for selective CO2 electroreduction to C2+ products[J]. Small, 2022, 18(8): 2106433.

[24]

Guo Q, Fu J L, Zhang C Y, Cai C Y, Wang C, Zhou L H, Xu R B, Wang M Y. Preparation of CoO/RGO@Ni foam electrode and its electrocatalytic reduction of CO2[J]. J. Electrochem., 2021, 27(4): 449-455.

[25]

Zhu C, Chen W, Song Y F, Dong X, Li G H, Wei W, Sun Y H. Effect of reaction conditions on Cu-catalyzed CO2 electroreduction[J]. J. Electrochem., 2020, 26(6): 797-807.

[26]

Liang Z B, Qu C, Guo W H, Zou R Q, Xu Q. Pristine metal-organic frameworks and their composites for energy storage and conversion[J]. Adv. Mater., 2018, 30(37): 1702891.

[27]

Kornienko N, Zhao Y, Kley C S, Zhu C, Kim D, Lin S, Chang C J, Yaghi O M, Yang P. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. J. Am. Chem. Soc., 2015, 137(44): 14129-14135.

[28]

Savéant J M. Molecular catalysis of electrochemical reactions. Mechanistic aspects[J]. Chem. Rev., 2008, 108(7): 2348-2378.

[29]

Chi S Y, Chen Q, Zhao S S, Si D H, Wu Q J, Huang Y B, Cao R. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide[J]. J. Mater. Chem. A, 2022, 10(9): 4653-4659.

[30]

Wannakao S A O, Jumpathong W, Kongpatpanich K A O. Tailoring metalloporphyrin frameworks for an efficient carbon dioxide electroreduction: Selectively stabilizing key intermediates with H-bonding pockets[J]. Inorg. Chem., 2017, 56(12): 7200-7209.

[31]

Wang C, Zhu C Y, Zhang M, Geng Y, Li Y G, Su Z M. An intriguing window opened by a metallic two-dimensional lindqvist-cobaltporphyrin organic framework as an electrochemical catalyst for the CO2 reduction reaction[J]. J. Mater. Chem. A, 2020, 8(29): 14807-14814.

[32]

Wang Y R, Huang Q, He C T, Chen Y, Liu J, Shen F C, Lan Y Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2[J]. Nat. Commun., 2018, 9(1): 4466.

[33]

Hod I, Sampson M D, Deria P, Kubiak C P, Farha O K, Hupp J T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2[J]. ACS Catal., 2015, 5(11): 6302-6309.

[34]

Titi H M, Patra R, Goldberg I. Exploring supramolecular self-assembly of tetraarylporphyrins by halogen bonding: Crystal engineering with diversely functionalized six-coordinate tin(L)2-porphyrin tectons[J]. Chem.-Eur. J., 2013, 19(44): 14941-14949.

[35]

Li J W, Zeng H L, Dong X, Ding Y M, Hu S P, Zhang R H, Dai Y Z, Cui P X, Xiao Z, Zhao D H, Zhou L J, Zheng T T, Xiao J P, Zeng J, Xia C. Selective CO2 electrolysis to CO using isolated antimony alloyed copper[J]. Nat. Commun., 2023, 14(1): 340.

[36]

He T, Chen S M, Ni B, Gong Y, Wu Z, Song L, Gu L, Hu W P, Wang X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms[J]. Angew. Chem. Int. Ed., 2018, 57(13): 3493-3498.

[37]

Jin S, Son H J, Farha O K, Wiederrecht G P, Hupp J T. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting[J]. J. Am. Chem. Soc., 2013, 135(3): 955-958.

[38]

Modak A, Nandi M, Mondal J, Bhaumik A. Porphyrin based porous organic polymers: Novel synthetic strategy and exceptionally high CO2 adsorption capacity[J]. Chem. Commun., 2012, 48(2): 248-250.

[39]

Liu C X, Zhang M L, Li J W, Xue W Q, Zheng T T, Xia C, Zeng J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling[J]. Angew. Chem. Int. Ed., 2022, 61(3): e202113498.

[40]

Teng X, Niu Y L, Gong S Q, Liu X, Chen Z F. Selective CO2 reduction to formate on heterostructured Sn/SnO2 nanoparticles promoted by carbon layer networks[J]. J. Electrochem., 2022, 28(2): 2108441.

[41]

Gong L, Gao Y, Wang Y H, Chen B T, Yu B Q, Liu W B, Han B, Lin C X, Bian Y Z, Qi D D, Jiang J Z. Efficient electrocatalytic carbon dioxide reduction with tetraphenylethylene- and porphyrin-based covalent organic frameworks[J]. Catal. Sci. Technol., 2022, 12(21): 6566-6571.

[42]

Derrick J S, Loipersberger M, Nistanaki S K, Rothweiler A V, Head-Gordon M, Nichols E M, Chang C J. Templating bicarbonate in the second coordination sphere enhances electrochemical CO2 reduction catalyzed by iron porphyrins[J]. J. Am. Chem. Soc., 2022, 144(26): 11656-11663.

[43]

Yu P E, Lv X M, Wang Q H, Huang H L, Weng W J, Peng C, Zhang L J, Zheng G F. Promoting electrocatalytic CO2reduction to CH4 by copper porphyrin with donor-acceptor structures[J]. Small, 2022, 19(4): 2205730.

[44]

Zhang X, Wang Y, Gu M, Wang M Y, Zhang Z S, Pan W Y, Jiang Z, Zheng H Z, Lucero M, Wang H L, Sterbinsky G E, Ma Q, Wang Y G, Feng Z X, Li J, Dai H J, Liang Y Y. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nat. Energy, 2020, 5(9): 684-692.

[45]

Li B, Wang X Y, Chen L, Zhou Y L, Dang W T, Chang J, Wu C T. Ultrathin Cu-TCPP MOF nanosheets: A new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers[J]. Theranostics, 2018, 8(15): 4086-4096.

[46]

Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. J. Am. Chem. Soc., 2015, 137(44): 14023-14026.

[47]

Zhao M T, Wang Y X, Ma Q L, Huang Y, Zhang X, Ping J F, Zhang Z C, Lu Q P, Yu Y F, Xu H, Zhao Y L, Zhang H. Ultrathin 2D metal-organic framework nanosheets[J]. Adv. Mater., 2015, 27(45): 7372-7378.

[48]

Li J, Song S, Meng J S, Tan L, Liu X M, Zheng Y F, Li Z Y, Yeung K W K, Cui Z D, Liang Y Q, Zhu S L, Zhang X C, Wu S L. 2D MOF periodontitis photodynamic ion therapy[J]. J. Am. Chem. Soc., 2021, 143(37): 15427-15439.

[49]

La D D, Thi H P N, Kim Y S, Rananaware A, Bhosale S V. Facile fabrication of Cu(Ⅱ)-porphyrin MOF thin films from tetrakis(4-carboxyphenyl)porphyrin and Cu(OH)2 nanoneedle array[J]. Appl. Surf. Sci., 2017, 424: 145-150.

[50]

Zhao S Y, Li S, Zhao Z C, Su Y P, Long Y K, Zheng Z Q, Cui D L, Liu Y, Wang C F, Zhang X J, Zhang Z T. Microwave-assisted hydrothermal assembly of 2d copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water[J]. Environ. Sci. Pollut. Res., 2020, 27(31): 39186-39197.

[51]

Kooti M. Fabrication of nanosized cuprous oxide using Fehling's solution[J]. Transaction F: Nanotechnology, 2010, 17: 73.

[52]

Karapinar D, Zitolo A, Huan T N, Zanna S, Taverna D, Galvão Tizei L H, Giaume D, Marcus P, Mougel V, Fontecave M. Carbon-nanotube-supported copper polyphthalocyanine for efficient and selective electrocatalytic CO2 reduction to CO[J]. ChemSusChem, 2020, 13(1): 173-179.

[53]

Xu T Y, Wei S T, Zhang X L, Zhang D T, Xu Y C, Cui X Q. Sulfur-doped Cu3p∣S electrocatalyst for hydrogen evolution reaction[J]. Mater. Res. Express, 2019, 6(7): 075501.

[54]

Zhang J, Mao X N, Pan B B, Xu J, Ding X, Han N, Wang L, Wang Y H, Li Y G. Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO2 reduction to ethylene in membrane electrode assemblies[J]. Nano Res., 2022, 16(4): 4685-4690.

[55]

Mette G, Sutter D, Gurdal Y, Schnidrig S, Probst B, Iannuzzi M, Hutter J, Alberto R, Osterwalder J. From porphyrins to pyrphyrins: Adsorption study and metalation of a molecular catalyst on Au(111)[J]. Nanoscale, 2016, 8: 7958-7968.

[56]

Mei B B, Liu C, Li J, Gu S Q, Du X L, Lu S Y, Song F, Xu W L, Jiang Z. Operando herfd-xanes and surface sensitive Δμ analyses identify the structural evolution of copper(Ⅱ) phthalocyanine for electroreduction of CO2[J]. J. Energy Chem., 2022, 64: 1-7.

[57]

Tang J K, Zhu C Y, Jiang T W, Wei L, Wang H, Yu K, Yang C L, Zhang Y B, Chen C, Li Z T, Zhang D W, Zhang L M. Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions[J]. J. Mater. Chem. A, 2020, 8(36): 18677-18686.

[58]

Wang W, Deng C Y, Xie S J, Li Y F, Zhang W Y, Sheng H, Chen C C, Zhao J C. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(Ⅰ)/copper(Ⅱ)[J]. J. Am. Chem. Soc., 2021, 143(7): 2984-2993.

[59]

Sang J Q, Wei P F, Liu T F, Lv H F, Ni X M, Gao D F, Zhang J W, Li H F, Zang Y P, Yang F, Liu Z, Wang G X, Bao X H. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products[J]. Angew. Chem. Int. Ed., 2022, 61(5): e202114238.

[60]

Lin Z C, Jiang Z, Yuan Y B, Li H, Wang H X, Tang Y R, Liu C C, Liang Y Y. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction[J]. Chinese Journal of Catalysis, 2022, 43(1): 104-109.

[61]

Siltamaki D, Chen S, Rahmati F, Lipkowski J, Cheng A C. Synthesis and electrochemical study of CuAu nanodendrites for CO2 reduction[J]. J. Electrochem., 2021, 27(3): 278-290.

AI Summary AI Mindmap
PDF (1922KB)

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/