PDF
(3349KB)
Abstract
Practical applications of lithium-sulfur (Li-S) batteries are hindered mainly by the low sulfur utilization and severe capacity fading derived from the polysulfide shuttling. Catalysis is an effective remedy to those problems by promoting the conversion of polysulfides to reduce their accumulation in the electrolyte, which needs the catalyst to have efficient adsorption ability to soluble polysulfides and high activity for their conversion. In this work, we have proposed a bimetallic compound of NiCo2S4 anchored onto sulfur-doped graphene (NCS@SG) to fabricate a catalytic interlayer for Li-S batteries. Compared to CoS, the NiCo2S4 demonstrated much higher catalytic activity toward sulfur reduction reaction due to its multiple anchoring and catalytic active sites derived from the coordination of the bimetallic centers. As a result, the NCS@SG interlayer dramatically improved the specific capacity, rate performance, and cycling stability of Li-S batteries. Especially, when the areal sulfur loading of the NCS@SG battery increased to 15.3 mg·cm-2, the high-capacity retention of 93.9 % could be achieved over 50 cycles.
Keywords
Lithium-sulfur batteries
/
Lithium polysulfides
/
Catalysis
/
Bimetallic sulfide catalyst
/
Shuttle effect
Cite this article
Download citation ▾
Wu-Xing Hua, Jing-Yi Xia, Zhong-Hao Hu, Huan Li, Wei Lv, Quan-Hong Yang.
Bimetallic Compound Catalysts with Multiple Active Centers for Accelerated Polysulfide Conversion in Li-S Batteries.
Journal of Electrochemistry, 2023, 29(3): 2217006 DOI:10.13208/j.electrochem.2217006
| [1] |
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012, 11: 19-29.
|
| [2] |
Manthiram A, Chung S H, Zu C X. Lithium-sulfur batteries: progress and prospects[J]. Adv. Mater., 2015, 27(12): 1980-2006.
|
| [3] |
Chen X, Hou T Z, Persson K A, Zhang Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives[J]. Mater. Today, 2019, 22: 142-158.
|
| [4] |
Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle I R, Lu G Q M. Carbon-sulfur composites for Li-S batteries: status and prospects[J]. J. Mater. Chem. A., 2013, 1(33): 9382-9394.
|
| [5] |
Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat. Commun., 2015, 6: 5682.
|
| [6] |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
|
| [7] |
Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2012, 134(45): 18510-18513.
|
| [8] |
Zheng G Y, Zhang Q F, Cha J J, Yang Y, Li W Y, Seh Z W, Cui Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Lett., 2013, 13(3): 1265-1270.
|
| [9] |
Zhang J T, Hu H, Li Z, Lou X W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angew. Chem., Int. Ed., 2016, 55(12): 3982-3986.
|
| [10] |
Hua W X, Yang Z, Nie H G, Li Z Y, Yang J Z, Guo Z Q, Ruan C P, Chen X A, Huang S M. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries[J]. ACS Nano, 2017, 11(2): 2209-2218.
|
| [11] |
Fang R P, Zhao S Y, Sun Z H, Wang W, Cheng H M, Li F. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv. Mater., 2017, 29(48): 1606823.
|
| [12] |
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): 1700270.
|
| [13] |
Geng C N, Hua W X, Wang D W, Ling G W, Zhang C, Yang Q H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques[J]. SusMat, 2021, 1(1): 51-65.
|
| [14] |
Wang L, Hua W X, Wan X, Feng Z, Hu Z H, Li H, Niu J T, Wang L X, Wang A S, Liu J Y, Lang X Y, Wang G, Li W F, Yang Q H, Wang W C. Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(14): 2110279.
|
| [15] |
Peng L L, Wei Z Y, Wan C Z, Li J, Chen Z, Zhu D, Baumann D, Liu H T, Allen C S, Xu X, Kirkland A I, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X F. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nat. Catal., 2020, 3(9): 762-770.
|
| [16] |
Han Z Y, Zhao S Y, Xiao J W, Zhong X W, Sheng J Z, Lv W, Zhang Q F, Zhou G M, Cheng H M. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries[J]. Adv. Mater., 2021, 33(44): 2105947.
|
| [17] |
Li Z H, Zhou C, Hua J H, Hong X F, Sun C L, Li H W, Xu X, Mai L Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability[J]. Adv. Mater., 2020, 32(10): 1907444.
|
| [18] |
Hua W X, Li H, Pei C, Xia J Y, Sun Y F, Zhang C, Lv W, Tao Y, Jiao Y, Zhang B S, Qiao S Z, Wan Y, Yang Q H. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(38): 2101006.
|
| [19] |
Lin H B, Yang L Q, Jiang X, Li G C, Zhang T R, Yao Q F, Zheng G W, Lee J Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(6): 1476-1486.
|
| [20] |
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.
|
| [21] |
Xia J Y, Hua W X, Wang L, Sun Y F, Geng C N, Zhang C, Wang W C, Wan Y, Yang Q H. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li-S batteries[J]. Adv. Funct. Mater., 2021, 31(26): 2101980.
|
| [22] |
Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017, 8: 14627.
|
| [23] |
Zhou J B, Liu X J, Zhu L Q, Zhou J, Guan Y, Chen L, Niu S W, Cai J Y, Sun D, Zhu Y C, Du J, Wang G M, Qian Y T. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry[J]. Joule, 2018, 2(12): 2681-2693.
|
| [24] |
Yang Y X, Zhong Y R, Shi Q W, Wang Z H, Sun K N, Wang H L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions[J]. Angew. Chem., Int. Ed., 2018, 57(47): 15549-15552.
|
| [25] |
Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-1703.
|
| [26] |
Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(19): 1900219.
|
| [27] |
Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He Y B, Zhang Q F, Kang F Y, Lv W, Yang Q H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(32): 2000315.
|
| [28] |
Zhao M, Peng H J, Zhang Z W, Li B Q, Chen X, Xie J, Chen X, Wei J Y, Zhang Q, Huang J Q. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal[J]. Angew. Chem. Int. Ed., 2019, 58(12): 3779-3783.
|
| [29] |
Zeng P, Liu C, Zhao X F, Yuan C, Chen Y G, Lin H P, Zhang L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries[J]. ACS Nano, 2020, 14(9): 11558-11569.
|
| [30] |
Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(5): 840-845.
|
| [31] |
Zhang B, Luo C, Deng Y Q, Huang Z J, Zhou G M, Lv W, He Y B, Wan Y, Kang F Y, Yang Q H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries[J]. Adv. Energy Mater., 2020, 10(15): 2000091.
|
| [32] |
Lv W, Tang D M, He Y B, You C H, Shi Z Q, Chen X C, Chen C M, Hou P X, Liu C, Yang Q H. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage[J]. ACS Nano, 2009, 3(11): 3730-3736.
|
| [33] |
Zheng C, Niu S Z, Lv W, Zhou G M, Li J, Fan S X, Deng Y Q, Pan Z Z, Li B H, Kang F Y, Yang Q H. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33: 306-312.
|
| [34] |
Xiao Z B, Yang Z, Wang L, Nie H G, Zhong M E, Lai Q Q, Xu X J, Zhang L J, Huang S M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Adv. Mater., 2015, 27(18): 2891-2898.
|
| [35] |
Liu Q, Jin J T, Zhang J Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. ACS Appl. Mater. Inter., 2013, 5(11): 5002-5008.
|
| [36] |
Zhang Z, Shao A H, Xiong D G, Yu J, Koratkar N, Yang Z Y. Efficient polysulfide redox enabled by lattice-distorted Ni3Fe intermetallic electrocatalyst-modified separator for lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(17): 19572-19580.
|
| [37] |
Li H, Meng R W, Guo Y, Chen B A, Jiao Y, Ye C, Long Y, Tadich A, Yang Q H, Jaroniec M, Qiao S Z. Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al-S batteries[J]. Nat. Commun., 2021, 12(1): 5714.
|
| [38] |
Liu B, Huang S Z, Kong D Z, Hu J P, Yang H Y. Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Li-S battery[J]. J. Mater. Chem. A, 2019, 7(13): 7604-7613
|
| [39] |
Xiao Z B, Yang Z, Li Z L, Li P Y, Wang R H. Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix[J]. ACS Nano, 2019, 13(3): 3404-3412.
|
| [40] |
Al Salem H, Babu G, Rao C V, Arava L M R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137(36): 11542-11545.
|
| [41] |
Hao B Y, Li H, Lv W, Zhang Y B, Niu S Z, Qi Q, Xiao S J, Li J, Kang F Y, Yang Q H. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries[J]. Nano Energy, 2019, 60: 305-311.
|
| [42] |
Xu K L, Liu X J, Liang J W, Cai J Y, Zhang K L, Lu Y, Wu X, Zhu M G, Liu Y, Zhu Y C, Wang G M, Qian Y T. Manipulating the redox kinetics of Li-S chemistry by tellurium doping for improved Li-S batteries[J]. ACS Energy Lett., 2018, 3(2): 420-427.
|
| [43] |
Luo L, Chung S H, Manthiram A. Rational design of a dual-function hybrid cathode substrate for lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(24): 1801014.
|
| [44] |
Shen Z H, Cao M Q, Zhang Z L, Pu J, Zhong C L, Li J C, Ma H X, Li F J, Zhu J, Pan F, Zhang H G. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery[J]. Adv. Funct. Mater., 2020, 30(3): 1906661.
|
| [45] |
Zhao M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q, Huang J Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52.
|
| [46] |
Zhao M, Peng Y Q, Li B Q, Zhang X Q, Huang J Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries[J]. J. Energy Chem., 2021, 56: 203-208.
|
| [47] |
Fang R P, Li G X, Zhao S Y, Yin L C, Du K, Hou P X, Wang S G, Cheng H M, Liu C, Li F. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries[J]. Nano Energy, 2017, 42: 205-214.
|
Funding
National Key R&D Program of China(2021YFF0500600)
National Natural Science Foundation of China(51932005)
National Natural Science Foundation of China(52022041)
All-Solid-State Lithium Battery Electrolyte Engineering Research Centre(XMHT20200203006)
China Postdoctoral Science Foundation(2022M710041)