Ultraviolet-Initiated In-Situ Cross-Linking of Multifunctional Binder Backbones Enables Robust Lithium-Sulfur Batteries

Sha Li , Xiao Zhan , Gu-Lian Wang , Hui-Qun Wang , Wei-Ming Xiong , Li Zhang

Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (4) : 2217004

PDF (2950KB)
Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (4) :2217004 DOI: 10.13208/j.electrochem.2217004
ARTICLE
research-article

Ultraviolet-Initiated In-Situ Cross-Linking of Multifunctional Binder Backbones Enables Robust Lithium-Sulfur Batteries

Author information +
History +
PDF (2950KB)

Abstract

Lithium-sulfur (Li-S) batteries show attractive prospects owing to their high theoretical energy density, but their commercialization still faces such challenges as lithium polysulfides shuttling, severe volume change and considerable polarization. These stubborn issues place higher demands on each component in the battery, such as the development of multifunctional binders with superior mechanical properties. Herein, ethoxylated trimethylolpropane triacrylate was firstly introduced into sulfur cathodes, and in-situ cross-linked by ultraviolet (UV) curing combined with traditional polyvinylidene difluoride binder (i.e., forming a binary binder, denoted as c-ETPTA/PVDF) to construct high-loading and durable Li-S batteries. The covalently cross-linked ETPTA framework not only significantly enhances the mechanical strength of the laminate, but also offers a strong chemical affinity for lithium polysulfides due to the abundant oxygen-containing groups. Moreover, the moderate interaction force between ether oxygen bonds and Li+ further accelerates the Li+ transport. As such, the S-c-ETPTA/PVDF electrode exhibited an ultralow attenuation rate of 0.038% at 2 C over 1000 cycles. Even under a sulfur loading of 7.8 mgS·cm-2, an average areal capacity of 6.2 mAh·cm-2 could be achieved after 50 cycles. This work indicates that light-assisted curing technology holds great promise in the fabrication of robust and high-energy-density Li-S batteries.

Keywords

Lithium-sulfur batteries / Ultraviolet curing / In-situ cross-linked / Multifunctional binder / High-strength electrode

Cite this article

Download citation ▾
Sha Li, Xiao Zhan, Gu-Lian Wang, Hui-Qun Wang, Wei-Ming Xiong, Li Zhang. Ultraviolet-Initiated In-Situ Cross-Linking of Multifunctional Binder Backbones Enables Robust Lithium-Sulfur Batteries. Journal of Electrochemistry, 2023, 29(4): 2217004 DOI:10.13208/j.electrochem.2217004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.

[2]

Li S, Cen Y, Xiang Q, Aslam M K, Hu B B, Li W, Tang Y, Yu Q, Liu Y P, Chen C G. Vanadium dioxide-reduced graphene oxide binary host as an efficient polysulfide plague for high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2019, 7(4): 1658-1668.

[3]

Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.

[4]

Zhang L, Qian T, Zhu X Y, Hu Z L, Wang M F, Zhang L Y, Jiang T, Tian J H, Yan C L. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries[J]. Chem. Soc. Rev., 2019, 48(22): 5432-5453.

[5]

Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.

[6]

Li S, Xu P, Aslam M K, Chen C G, Rashid A, Wang G L, Zhang L, Mao B W. Propelling polysulfide conversion for high-loading lithium-sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes[J]. Energy Storage Mater., 2020, 27: 51-60.

[7]

Wang N N, Zhang X, Ju Z Y, Yu X W, Wang Y X, Du Y, Bai Z C, Dou S X, Yu G H. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework[J]. Nat. Commun., 2021, 12(1): 4519-4528.

[8]

Song Y Z, Zhao W, Kong L, Zhang L, Zhu X Y, Shao Y L, Ding F, Zhang Q, Sun J Y, Liu Z F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries[J]. Energy Environ. Sci., 2018, 11(9): 2620-2630.

[9]

Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.

[10]

Li Y J, Lin S Y, Wang D D, Gao T T, Song J W, Zhou P, Xu Z K, Yang Z H, Xiao N, Guo S J. Single atom array mimic on ultrathin mof nanosheets boosts the safety and life of lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(8): 1906722-1906731.

[11]

Li S, Lin J D, Ding Y, Xu P, Guo X Y, Xiong W M, Wu D Y, Dong Q F, Chen J J, Zhang L. Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium-sulfur batteries[J]. ACS Nano, 2021, 15(8): 13803-13813.

[12]

Xu S N, Zhao T, Wang L L, Huang Y X, Ye Y S, Zhang N X, Feng T, Li L, Wu F, Chen R J. Endoplasmic-reticulum-like catalyst coating on separator to enhance polysulfides conversion for lithium-sulfur batteries[J]. J. Energy Chem., 2022, 67: 423-431.

[13]

Fan X X, Yuan R M, Lei J, Lin X D, Xu P, Cui X Y, Cao L, Zheng M S, Dong Q F. Turning soluble polysulfide intermediates back into solid state by a molecule binder in Li-S batteries[J]. ACS Nano, 2020, 14(11): 15884-15893.

[14]

Pei F, Dai S Q, Guo B F, Xie H, Zhao C W, Cui J Q, Fang X L, Chen C M, Zheng N F. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities[J]. Energy Environ. Sci., 2021, 14(2): 975-985.

[15]

Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat. Rev. Mater., 2017, 2(4): 16103-16118.

[16]

Gu Y, Wang W W, Li Y J, Wu Q H, Tang S, Yan J W, Zheng M S, Wu D Y, Fan C H, Hu W Q, Chen Z B, Fang Y, Zhang Q H, Dong Q F, Mao B W. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nat. Commun., 2018, 9: 1339-1347.

[17]

Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): 4372-4379.

[18]

Seh Z W, Zhang Q F, Li W Y, Zheng G Y, Yao H B, Cui Y. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder[J]. Chem. Sci., 2013, 4(9): 3673-3677.

[19]

Liu J, Galpaya D G D, Yan L J, Sun M H, Lin Z, Yan C, Liang C D, Zhang S Q. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery[J]. Energy Environ. Sci., 2017, 10(3): 750-755.

[20]

Zhang H, Hu X H, Zhang Y, Wang S Y, Xin F, Chen X D, Yu D S. 3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries[J]. Energy Storage Mater., 2019, 17: 293-299.

[21]

Huang X, Luo B, Knibbe R, Hu H, Lyu M Q, Xiao M, Sun D, Wang S C, Wang L Z. An integrated strategy towards enhanced performance of the lithium-sulfur battery and its fading mechanism[J]. Chem.-Eur. J., 2018, 24(69): 18544-18550.

[22]

Yuan J J, Huang Z, Song Y Z, Li M Y, Fang L F, Zhu B K, Li H Y. In-situ crosslinked binder for high-stability S cathodes with greatly enhanced conduction and polysulfides anchoring[J]. Chem. Eng. J., 2021, 426: 128705-128714.

[23]

Fan W, Zhang X L, Li C J, Zhao S Y, Wang J. UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-Metal battery[J]. ACS Appl. Energ. Mater., 2019, 2(6): 4513-4520.

[24]

Luo Z, Xu Y, Gong C R, Zheng Y Q, Zhou Z X, Yu L M. An ultraviolet curable silicon/graphite electrode binder for long-cycling lithium ion batteries[J]. J. Power Sources, 2021, 485: 229348-229355.

[25]

Ma C, Feng Y M, Liu X J, Yang Y, Zhou L J, Chen L B, Yan C L, Wei W F. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries[J]. Energy Storage Mater., 2020, 32: 46-54.

[26]

Yu Z S, Liu M L, Guo D Y, Wang J H, Chen X, Li J, Jin H L, Yang Z, Chen X A, Wang S. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2020, 59(16): 6406-6411.

[27]

Luo D, Li C J, Zhang Y G, Ma Q Y, Ma C Y, Nie Y H, Li M, Weng X F, Huang R, Zhao Y, Shui L L, Wang X, Chen Z W. Design of quasi-mof nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(2): 2105541-2105550.

[28]

Lei J, Fan X X, Liu T, Xu P, Hou Q, Li K, Yuan R M, Zheng M S, Dong Q F, Chen J J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries[J]. Nat. Commun., 2022, 13(1): 202-211.

[29]

Zhang B, Qin X, Li G R, Li G R, Gao X P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy Environ. Sci., 2010, 3(10): 1531-1537.

[30]

Deng Z F, Zhang Z A, Lai Y Q, Liu J, Li J, Liu Y X. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading[J]. J Electrochem Soc, 2013, 160(4): A553-A558.

[31]

Yin Z H, Pan S Y, Cheng Q, Zhang G Z, Yu X Y, Pan Z X, Rao H S, Zhong X H. Mild-method synthesised rGo-TiO2 as an effective polysulphide-barrier for lithium-sulphur batteries[J]. J. Alloy. Compd., 2020, 836: 155341-155349.

[32]

Yao S S, Xue S K, Peng S H, Jing M X, Qian X Y, Shen X Q, Li T B, Wang Y H. Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium-sulfur batteries[J]. J. Mater. Sci.-Mater. Electron., 2018, 29(20): 17921-17930.

[33]

Nandasiri M I, Camacho-Forero L E, Schwarz A M, Shutthanandan V, Thevuthasan S, Balbuena P B, Mueller K T, Murugesan V. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries[J]. Chem. Mat., 2017, 29(11): 4728-4737.

[34]

Vorobeva K A, Eliseeva S N, Apraksin R V, Kamenskii M A, Tolstopjatova E G, Kondratiev V V. Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder[J]. J. Alloy. Compd., 2018, 766: 33-44.

[35]

Chu Y, Chen N, Cui X M, Liu A M, Zhen L, Pan Q M. A multi-functional binder for high loading sulfur cathode[J]. J. Energy Chem., 2020, 46: 99-104.

[36]

Wang H, Yang Y, Zheng P T, Wang Y Y, Ng S W, Chen Y K, Deng Y H, Zheng Z J, Wang C Y. Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries[J]. Chem. Eng. J., 2020, 395: 124981-124991.

[37]

Luo X, Lu X B, Chen X D, Chen Y, Yu C Y, Su D W, Wang G X, Cui L F. A functional hyperbranched binder enabling ultra-stable sulfur cathode for high-performance lithium-sulfur battery[J]. J. Energy Chem., 2020, 50: 63-72.

[38]

Kim S, Cho M, Lee Y. Saponin-containing multifunctional binder toward superior long-term cycling stability in Li-S batteries[J]. J. Mater. Chem. A, 2020, 8(20): 10419-10425.

[39]

Yang C A, Du Q K, Li Z H, Ling M, Song X Y, Battaglia V, Chen X B, Liu G. In-situ covalent bonding of polysulfides with electrode binders in operando for lithium-sulfur batteries[J]. J. Power Sources, 2018, 402: 1-6.

[40]

Rashid A, Zhu X Y, Wang G L, Ke C Z, Li S, Sun P F, Hu Z L, Zhang Q B, Zhang L. Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium-sulfur batteries[J]. J. Energy Chem., 2020, 49: 71-79.

[41]

Wang H L, Ling M, Bai Y, Chen S, Yuan Y X, Liu G, Wu C, Wu F. Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries[J]. J. Mater. Chem. A, 2018, 6(16): 6959-6966.

PDF (2950KB)

119

Accesses

0

Citation

Detail

Sections
Recommended

/