Supperlattice-Like Structure: Ordered Mass Transfer Endowing High Quality Output of Fuel Cell

Jian Wang , Wen-Hui Xuan , Qian He , Jing-Xia Jiang , Yuan-Yuan Zhou , Yao Nie , Qiang Liao , Min-Hua Shao , Wei Ding , Zi-Dong Wei

Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (1) : 2215003

PDF (3409KB)
Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (1) :2215003 DOI: 10.13208/j.electrochem.2215003
ARTICLE
research-article

Supperlattice-Like Structure: Ordered Mass Transfer Endowing High Quality Output of Fuel Cell

Author information +
History +
PDF (3409KB)

Abstract

The current or voltage fluctuation in fuel cell operation is harmful to the fuel cell system and power application equipment. Here, we report a technique to eliminate such a fluctuation by the aid of new type of catalysts, superlattice-like mesoporous PtCo catalysts. The current fluctuation in fuel cells catalyzed by two invented catalysts are fixed at as low as 25 mA·cm-2 with a power of 0.75 W·cm-2 or 120 mA·cm-2 with a power of 1.01 W·cm-2, and no noticeable current decay was detected over 100 h. By contrast, a cell catalyzed by conventional Pt/C catalysts with the same Pt loading delivered a current fluctuation as large as 180 mA·cm-2 even at low power output of 0.30 W·cm-2, which also showed 32% current decay rate in 50 h. The superlattices-like mesoporous structure not only enhances the mass transfer and depresses the water flooding but also effectively increases the Pt utilization within its 3D carbon frameworks. Its power output was as high as 11.69 W·mgPt-1 (MEA), which is 46.1% higher than the 2025 target of DOE, USA, 8.0 W·mgPt-1(MEA).

Keywords

Quality output / Superlattices-like / PtCo alloy / Mass transport / Oxygen reductive reaction

Cite this article

Download citation ▾
Jian Wang, Wen-Hui Xuan, Qian He, Jing-Xia Jiang, Yuan-Yuan Zhou, Yao Nie, Qiang Liao, Min-Hua Shao, Wei Ding, Zi-Dong Wei. Supperlattice-Like Structure: Ordered Mass Transfer Endowing High Quality Output of Fuel Cell. Journal of Electrochemistry, 2023, 29(1): 2215003 DOI:10.13208/j.electrochem.2215003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang G J, Yu Y, Liu H, Gong C L, Wen S, Wang X H, Tu Z K. Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review[J]. Fuel Process Technol., 2018, 179: 203-228.

[2]

Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. J. Phys. Chem. Lett., 2016, 7(7): 1127-1137.

[3]

Ahluwalia R K, Wang X, Steinbach A J. Performance of advanced automotive fuel cell systems with heat rejection constraint[J]. J. Power Sources, 2016, 309: 178-191.

[4]

Béthoux O, Cathelin J. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems[J]. Eur. Phys. J. Appl. Phys., 2010, 52(3): 31102.

[5]

Sakka M A, Mierlo J V, Gualous H. Dc/Dc Converters for Electric vehicles[M]. Turkey: Seref S, 2011, 100: 466.

[6]

Kolli A, Gaillard A, De Bernardinis A, Bethoux O, Hissel D, Khatir Z. A review on DC/DC converter architectures for power fuel cell applications[J]. Energ. Convers. Manage., 2015, 105: 716-730.

[7]

Wen H Q, Su B. Hybrid-mode interleaved boost converter design for fuel cell electric vehicles[J]. Energ. Convers. Manage., 2016, 122: 477-487.

[8]

Xu H P, Kong L, Wen X H. Fuel cell power system and high power DC-DC converter[J]. IEEE T Power. Electr., 2004, 19(5): 1250-1255.

[9]

Tanrioven M, Alam M S. Modeling, control, and power quality evaluation of a PEM fuel cell-based power supply system for residential use[J]. IEEE T Power. Electr., 2006, 42(6): 1582-1589.

[10]

Zenith F, Skogestad S. Control of fuel cell power output[J]. J. Process Contr., 2007, 17(4): 333-347.

[11]

Shen J, Xu L, Chang H W, Tu Z K, Chan S H. Partial flooding and its effect on the performance of a proton exchange membrane fuel cell[J]. Energ. Convers. Manage., 2020, 207: 112537.

[12]

Xing L, Shi W D, Su H N, Xu Q, Das P K, Mao B D, Scott K. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization[J]. Energy, 2019, 177: 445-464.

[13]

Laribi S, Mammar K, Sahli Y, Koussa K. Analysis and diagnosis of PEM fuel cell failure modes (flooding & drying) across the physical parameters of electrochemical impedance model: Using neural networks method[J]. Sustain. Energy Technol. Assess., 2019, 34: 35-42.

[14]

Ijaodola O S, El-Hassan Z, Ogungbemi E, Khatib F N, Wilberforce T, Thompson J, Olabi A G. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179: 246-267.

[15]

Li Y H, Pei P C, Wu Z Y, Ren P, Jia X N, Chen D F, Huang S W. Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells[J]. Appl. Energ., 2018, 224: 42-51.

[16]

Sun R L, Xia Z X, Shang L, Fu X D, Li H Q, Wang S L, Sun G Q. Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes[J]. J. Mater. Chem. A, 2017, 5(29): 15260-15265.

[17]

Zeng Y C, Shao Z G, Zhang H J, Wang Z Q, Hong S J, Yu H M, Yi B L. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells[J]. Nano Energy, 2017, 34: 344-355.

[18]

Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z T, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X, Lin J Y. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Adv. Energy Mater., 2011, 1(6): 1205-1214.

[19]

Steinbach A J, Debe M K, Pejsa M J, Peppin D M, Haug A T, Kurkowski M J, Hendricks S M. Influence of Anode GDL on PEMFC ultra-thin electrode water management at low temperatures[M]. ECS Trans. 2011, 41: 449-457.

[20]

Jiang S F, Yi B L. The progress of order-structured membrane electrode assembly[J]. J. Electrochem., 2016, 22(3): 213-218.

[21]

Yan C, Wang T. A new view for nanoparticle assemblies: From crystalline to binary cooperative complementarity[J]. Chem. Soc. Rev., 2017, 46(5): 1483-1509.

[22]

Li T T, Xue B, Wang B W, Guo G N, Han D D, Yan Y C, Dong A G. Tubular monolayer superlattices of hollow Mn3O4nanocrystals and their oxygen reduction activity[J]. J. Am. Chem. Soc., 2017, 139(35): 12133-12136.

[23]

Cheng K Y, Lin C H, Tzeng M C, Mahmood A, Saeed M, Chen C H, Ong C W, Lee S L. Superstructure manipulation and electronic measurement of monolayers comprising discotic liquid crystals with intrinsic dipole moment using STM/STS[J]. Chem. Commun., 2018, 54(58): 8048-8051.

[24]

Ding J, Liu Z, Liu X R, Liu J, Deng Y D, Han X P, Zhong C, Hu W B. Mesoporous decoration of freestanding palladium nanotube arrays boosts the electrocatalysis capabilities toward formic acid and formate oxidation[J]. Adv. Energy Mater., 2019, 9(25): 1900955.

[25]

Burian M, Karner C, Yarema M, Heiss W, Amenitsch H, Dellago C, Lechner R T. A shape-induced orientation phase within 3D nanocrystal solids[J]. Adv. Mater., 2018, 30(32): 1802078.

[26]

Wang J, Wu G P, Wang W L, Xuan W H, Jiang J X, Wang J C, Li L, Lin W F, Ding W, Wei Z D. A neural-network-like catalyst structure for the oxygen reduction reaction: carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies[J]. J. Mater. Chem. A, 2019, 7(34): 19786-19792.

[27]

Wang J, Ding W, Wei Z D. Review: Performance of polymer electrolyte membrane fuel cells at ultra-low platinum loadings[J]. Acta Phys. -Chim. Sin., 2020, 37(9): 2009094.

[28]

Wang J, Wu G P, Xuan W H, Peng L S, Feng Y, Ding W, Li L, Liao Q, Wei Z D. A framework ensemble facilitates high Pt utilization in a low Pt loading fuel cell[J]. Catal. Sci. Technol., 2021, 11(8): 2957-2963.

[29]

Wang Y C, Lai Y J, Song L, Zhou Z Y, Liu J G, Wang Q, Yang X D, Chen C, Shi W, Zheng Y P, Rauf M, Sun S G. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density[J]. Angew. Chem. Int. Edit., 2015, 54(34): 9907-9910.

[30]

Wang M J, Zhao T, Luo W, Mao Z X, Chen S G, Ding W, Deng Y H, Li W, Li J, Wei Z D. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts[J]. AIChE J., 2018, 64(7): 2881-2889.

PDF (3409KB)

126

Accesses

0

Citation

Detail

Sections
Recommended

/