Mechanism and Application of Nickel Nano-Cone by Electrodeposition on a Flexible Substrate

Xiu-Ren Ni , Ya-Ting Zhang , Chong Wang , Yan Hong , Yuan-Ming Chen , Yuan-Zhang Su , Wei He , Xian-Ming Chen , Ben-Xia Huang , Zhen-Lin Xu , Yi-Feng Li , Neng-Bin Li , Yong-Jie Du

Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (7) : 2213008

PDF (2520KB)
Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (7) :2213008 DOI: 10.13208/j.electrochem.2213008
Articles
research-article

Mechanism and Application of Nickel Nano-Cone by Electrodeposition on a Flexible Substrate

Author information +
History +
PDF (2520KB)

Abstract

Nano-array structure possesses promising prospect in power supply, optical device and electronic manufacturing. In this paper, a black nickel nano-cone array was prepared on a flexible substrate by galvanostatic deposition and the corresponding factors involved in the fabrication of nickel nano-cone array was explored. Experimental results showed that a large current density and low main salt concentration were not favored to the formation of cone nickel structure. It was also found that ammonium chloride, as the crystal modifier, was crucial to deposit the uniform nano-cone array. In addition, the growth mechanism of nickel nano-cone was further studied by molecular dynamics simulation. The excellent wettability and light absorption of nickel nano-cone array were investigated, which demonstrates potential applications of the nickel nano-cone array.

Keywords

nickel nano-cone array / electrodeposition / molecular dynamics simulation / flexible

Cite this article

Download citation ▾
Xiu-Ren Ni, Ya-Ting Zhang, Chong Wang, Yan Hong, Yuan-Ming Chen, Yuan-Zhang Su, Wei He, Xian-Ming Chen, Ben-Xia Huang, Zhen-Lin Xu, Yi-Feng Li, Neng-Bin Li, Yong-Jie Du. Mechanism and Application of Nickel Nano-Cone by Electrodeposition on a Flexible Substrate. Journal of Electrochemistry, 2022, 28(7): 2213008 DOI:10.13208/j.electrochem.2213008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries[J]. Nano Energy, 2020, 68: 104307.

[2]

Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: Possibilities and challenges[J]. Adv. Mater., 2012, 24(2): 229-251.

[3]

Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971-1975.

[4]

Su Z J, Yang C, Xie B H, Lin Z Y, Zhang Z X, Liu J P, Li B H, Kang F Y, Wong C P. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitort[J]. Energy Environ. Sci., 2014, 7(8): 2652-2659.

[5]

Zhang S C, Du Z J, Lin R X, Jiang T, Liu G R, Wu X M, Weng D S. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries[J]. Adv. Mater., 2010, 22(47): 5378-5382.

[6]

Wang X H, Yang Z B, Sun X L, Li X W, Wang D S, Wang P, He D Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries[J]. J. Mater. Chem., 2011, 21(27): 9988-9990.

[7]

Xia Y Y, Mo X, Ling H Q, Hang T, Li M. Facile fabrication of Au nanoparticles-decorated Ni nanocone arrays as effective surface-enhanced Raman scattering substrates[J]. J. Electrochem. Soc., 2016, 163(10): D575-D578.

[8]

Peng Z M, Yang H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property[J]. Nano Today, 2009, 4(2): 143-164.

[9]

Lohse S E, Murphy C J. The quest for shape control: A history of gold nanorod synthesis[J]. Chem. Mat., 2013, 25(8): 1250-1261.

[10]

Zhou X S, Wan L J, Guo Y G. Synthesis of MoS2 nano-sheet-graphene nanosheet hybrid materials for stable lithium storage[J]. Chem. Commun., 2013, 49(18): 1838-1840.

[11]

Dow W P, Chen H H, Yen M Y, Chen W H, Hsu K H, Chuang P Y, Ishizuka H, Sakagawa N, Kimizuka R. Through-hole filling by copper electroplating[J]. J. Electrochem. Soc., 2008, 155(12): D750-D757.

[12]

Huang Q, Lyons T W, Sides W D. Electrodeposition of cobalt for interconnect application: Effect of dimethylglyoxime[J]. J. Electrochem. Soc., 2016, 163(13): D715-D721.

[13]

Moffat T P, Wheeler D, Josell D. Electrodeposition of copper in the SPS-PEG-Cl additive system-I. Kinetic measurements: Influence of SPS[J]. J. Electrochem. Soc., 2004, 151(4): C262-C271.

[14]

Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly(1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.

[15]

Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): D155-D167.

[16]

Dow W P, Lu C W, Lin J Y, Hsu F C. Highly selective Cu electrodeposition for filling through silicon holes[J]. Electrochem. Solid State Lett., 2011, 14(6): D63-D67.

[17]

Gu C, Tu J. One-step fabrication of nanostructured Ni film with Lotus effect from deep eutectic solvent[J]. Langmuir, 2011, 27(16): 10132-10140.

[18]

Walter E C, Zach M P, Favier F, Murray B, Inazu K, Hemminger J C, Penner R M. Electrodeposition of porta-ble metal nanowire arrays[M]. USA: Sple-Int. Soc. Optical Engineering, 2002.

[19]

Yin A J, Li J, Jian W, Bennett A J, Xu J M. Fabrication of highly ordered metallic nanowire arrays by electrodeposition[J]. Appl. Phys. Lett., 2001, 79(7): 1039-1041.

[20]

Huang B H, Zhang X F, Cai J N, Liu W K, Lin S. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR[J]. J. Appl. Ele-ctrochem., 2019, 49(8): 767-777.

[21]

Wu F F, Ze H J, Chen S H, Gao X F. High-efficiency boiling heat transfer interfaces composed of electroplated copper nanocone cores and low-thermal-conductivity nickel nanocone coverings[J]. ACS Appl. Mater. Interfaces, 2020, 12(35): 39902-39909.

[22]

Hang T, Hu A M, Ling H Q, Li M, Mao D L. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition[J]. Appl. Surf. Sci., 2010, 256(8): 2400-2404.

[23]

Ebrahimi F, Bourne G R, Kelly M S, Matthews T E. Mechanical properties of nanocrystalline nickel produced by electrodeposition[J]. Nanostruct. Mater., 1999, 11(3): 343-350.

[24]

Elsherik A M, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition[J]. J. Mater. Sci., 1995, 30(22): 5743-5749.

[25]

Chen Z, Zhu C, Cai M L, Yi X Y, Li J H. Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition[J]. Appl. Surf. Sci., 2020, 508: 145291.

[26]

Lai Z Q, Wang S X, Wang C, Hong Y, Zhou G Y, Chen Y M, He W, Peng Y Q, Xiao D J. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Comput. Mater. Sci., 2018, 147: 95-102.

[27]

Wang C, An M Z, Yang P X, Zhang J Q. Prediction of a new leveler (N-butyl-methyl piperidinium bromide) for through-hole electroplating using molecular dynamics simulations[J]. Electrochem. Commun., 2012, 18: 104-107.

[28]

Sun H, Ren P, Fried J R. The compass force field: Parameterization and validation for phosphazenes[J]. Comput. Theor. Polym. Sci., 1998, 8(3-4): 363-363.

[29]

Hackett J C. Chemical reactivity theory: A density functional view[J]. J. Am. Chem. Soc., 2010, 132(21): 7558-7558.

[30]

Jiang Q, Tallury S S, Qiu Y P, Pasquinelli M A. Interfacial characteristics of a carbon nanotube-polyimide nano-composite by molecular dynamics simulation[J]. Nano-technol. Rev., 2020, 9(1): 136-145.

[31]

Premkumar S, Jawahar A, Mathavan T, Dhas M K, Sathe V G, Benial A M F. Dft calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine[J]. Spectroc. Acta Pt. A-Molec. Bio-molec. Spectr., 2014, 129: 74-83.

[32]

Shen J, Li Y, He J H. On the Kubelka-Munk absorption coefficient[J]. Dyes Pigment., 2016, 127: 187-188.

[33]

Tang M X, Zhang S T, Qiang Y J, Chen S J, Luo L, Gao J Y, Feng L, Qin Z J. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Adv., 2017, 7(64): 40342-40353.

[34]

Oláh J, Van Alsenoy C, Sannigrahi A B. Condensed fukui functions derived from stockholder charges: Assess-ment of their performance as local reactivity descriptors[J]. J. Phys. Chem. A, 2002, 106(15): 3885-3890.

[35]

Lai Z Q, Wang C, Huang Y Z, Chen Y M, Wang S X, Hong Y, Zhou G Y, He W, Su X H, Sun Y K, Tao Y G, Lu X Y. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence[J]. Mater. Today Commun., 2020, 24: 100973.

[36]

Saraireh S A, Altarawneh M, Tarawneh M A. Nanosystem’s density functional theory study of the chlorine adsorption on the Fe(100) surface[J]. Nanotechnol. Rev., 2021, 10(1): 719-727.

[37]

Tarasevich Y I. The surface energy of hydrophilic and hydrophobic adsorbents[J]. Colloid J., 2007, 69(2): 212-220.

[38]

Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays[J]. Nano Lett., 2009, 9(1): 279-282.

[39]

Xu Q, Qian X, Qu Y Q, Hang T, Zhang P, Li M, Gao L. Electrodeposition of Cu2O nanostructure on 3D Cu micro-cone arrays as photocathode for photoelectrochemical water reduction[J]. J. Electrochem. Soc., 2016, 163(10): H976-H981.

[40]

Li M H, Keller P, Li B, Wang X G, Brunet M. Light-driven side-on nematic elastomer actuators[J]. Adv. Mater., 2003, 15(7-8): 569-572.

PDF (2520KB)

105

Accesses

0

Citation

Detail

Sections
Recommended

/