Effect of Corrosion Inhibitors on Copper Etching to Form Thick Copper Line of PCB in Acidic Etching Solution

Xiao-Li Wang , Wei He , Xian-Ming Chen , Hong Zeng , Yuan-Zhang Su , Chong Wang , Gao-Sheng Li , Ben-Xia Huang , Lei Feng , Gao Huang , Yuan-Ming Chen

Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (7) : 2213007

PDF (1574KB)
Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (7) :2213007 DOI: 10.13208/j.electrochem.2213007
Articles
research-article

Effect of Corrosion Inhibitors on Copper Etching to Form Thick Copper Line of PCB in Acidic Etching Solution

Author information +
History +
PDF (1574KB)

Abstract

The chemical compounds of 2-mercaptobenzothiazole (2-MBT), benzotriazole (BTA) and phenoxyethanol (MSDS) as corrosion inhibitors were used to inhibit the copper etching to form the thick copper line of PCB in the acidic etching solution. The inhibition status was characterized with contact angle measurement, electrochemical test and etch factor calculation, while the corrosion morphology of copper surface was studied by scanning electron microscope. The adsorption mechanism of corrosion inhibitors on copper surface is analyzed by molecular dynamics and quantum chemistry calculations. The results indicated that the synergistic function of the two inhibitors could effectively promote their adsorption on the copper surface in parallel, while their adsorption energy could be higher than that of the single inhibitor. The etch factor of the thick copper line with about 33 μm in thickness increased to 6.59 from the etching solution with 2-MBT and MSDS for good agreement of PCB manufacture.

Keywords

corrosion inhibitor / synergistic function / thick copper line / acidic etching solution

Cite this article

Download citation ▾
Xiao-Li Wang, Wei He, Xian-Ming Chen, Hong Zeng, Yuan-Zhang Su, Chong Wang, Gao-Sheng Li, Ben-Xia Huang, Lei Feng, Gao Huang, Yuan-Ming Chen. Effect of Corrosion Inhibitors on Copper Etching to Form Thick Copper Line of PCB in Acidic Etching Solution. Journal of Electrochemistry, 2022, 28(7): 2213007 DOI:10.13208/j.electrochem.2213007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He W. Electrical information science and technology[M]. Beijing: China Machine Press, 2021. 1-11.

[2]

Huang H L, Guo X P, Zhang G A, Dong Z H. Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer[J]. Corrosion Sci., 2011, 53(10): 3446-3449.

[3]

Zhang S T, Tao Z H, Li W H, Hou B R. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1 M hydrochloric acid[J]. Appl. Surf. Sci., 2009, 255(15): 6757-6763.

[4]

Papapanayiotou D, Deligianni H, Alkire R C. Effect of Benzotriazole on the anisotropic electrolytic etching of copper[J]. J. Electrochem. Soc., 1998, 145(9): 3016-3024.

[5]

Cakir O. Copper etching with cupric chloride and regeneration of waste etchant[J]. J. Mater. Process. Technol., 2006, 175(1-3): 63-68.

[6]

Chen Y M, He W, Chen X M, Wang C, Tao Z H, Wang S X, Zhou G Y, Moshrefi-Torbati M. Plating uniformity of bottom-up copper pillars and patterns for IC substrates with additive-assisted electrodeposition[J]. Electrochim. Acta, 2014, 120: 293-301.

[7]

Zhong Y Q, Zhang W F, Jin L K, Sun B H. Improvement of fine line manufacturing by etching addictive[J]. Printed Circuit Information, 2018, 15(2):56-62.

[8]

Guo X M, Huang H L, Liu D. The inhibition mechanism and adsorption behavior of three purine derivatives on the corrosion of copper in alkaline artificial seawater: structure and performance[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2021, 622: 126644.

[9]

Li L, Zhang X H, Gong S D, Zhao H X, Bai Y, Li Q S, Ji L. The discussion of descriptors for the QSAR model and molecular dynamics simulation of benzimidazole derivatives as corrosion inhibitors[J]. Corrosion Sci., 2015, 99: 76-88.

[10]

Sherif E S M, Erasmus R M, Comins J D. Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor[J]. Corrosion Sci., 2008, 50(12): 3439-3445.

[11]

Lei S S, Wang S L, Li H L, Wang C W, Yang Y D A, Cheng Y S, Li S. Effect of benzotriazole and 5-methyl/ 1-H carboxyl benzotriazole on chemical mechanical polishing of cobalt in H2O2 based slurry[J]. ECS J. Solid State Sci. Technol., 2021, 10(7): 074002.

[12]

Moretti G, Guidi F, Grion G. Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid[J]. Corrosion Sci., 2004, 46(2): 387-403.

[13]

Huang H L, Guo X M. The Relationship between the inhibition performances of three benzo derivatives and their structures on the corrosion of copper in 3.5wt.% NaCl solution[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2020, 598: 124809.

[14]

Chiter F, Costa D, Maurice V, Marcus P. DFT investigation of 2-mercaptobenzothiazole adsorption on model oxidized copper surfaces and relationship with corrosion inhibition[J]. Appl. Surf. Sci., 2020, 537: 147802.

[15]

Li G S. Investigation on etching technology and corrosion inhibition mechanism of thick copper circuit[D]. Chengdu: University of Electronic Science and Technology of China, 2020.

[16]

Guo L, Dong W P, Zhang S T. Theoretical challenges in understanding the inhibition mechanism of copper corrosion in acid media in the presence of three triazole derivatives[J]. RSC Adv., 2014, 4(79): 41956-41967.

[17]

Gece G, Bilgi S, Türken. Quantum chemical studies of some amino acids on the corrosion of cobalt in sulfuric acid solution[J]. Mater. Corros., 2010, 61(2): 141-146.

[18]

Awad M K, Mustafa M R, Elnga M M A. Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface[J]. Theochem-J. Mol. Struct., 2010, 959(1-3): 66-74.

[19]

Chen J, Qiang Y J, Peng S N, Gong Z L, Zhang S T, Gao L Z, Tan B C, Chen S J, Guo L. Experimental and computational investigations of 2-amino-6-bromobenzothiazole as a corrosion inhibitor for copper in sulfuric acid[J]. J. Adhes. Sci. Technol., 2018, 32(19): 2083-2098.

[20]

Bastidas J M, Pinilla P, Cano E, Polo J L, Miguel S. Copper corrosion inhibition by triphenylmethane derivatives in sulphuric acid media[J]. Corrosion Sci., 2003, 45(2): 427-449.

[21]

Tao Z H, He W, Wang S X, Zhou G Y. Electrochemical study of cyproconazole as a novel corrosion inhibitor for copper in acidic solution[J]. Ind. Eng. Chem. Res., 2013, 52(50): 17891-17899.

[22]

Aboelnga M M, Awad M K, Gauld J W, Mustafa M R. An assessment to evaluate the validity of different methods for the description of some corrosion inhibitors[J]. J. Mol. Model., 2014, 20(9): 2422.

PDF (1574KB)

99

Accesses

0

Citation

Detail

Sections
Recommended

/