Fe Nanoparticles Encapsulated in N-Doped Porous Carbon for Efficient Oxygen Reduction in Alkaline Media

Chun-Yan Li , Rui Zhang , Xiao-Jie Ba , Xiao-Le Jiang , Yao-Yue Yang

Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (5) : 2210241

PDF (1746KB)
Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (5) :2210241 DOI: 10.13208/j.electrochem.2210241
ARTICLE
research-article

Fe Nanoparticles Encapsulated in N-Doped Porous Carbon for Efficient Oxygen Reduction in Alkaline Media

Author information +
History +
PDF (1746KB)

Abstract

Rational design and synthesis of non-precious-metal catalyst plays an important role in improving the activity and stability for oxygen reduction reaction (ORR) but remains a major challenge. In this work, we used a facile approach to synthesize iron nanoparticles encapsulated in nitrogen-doped porous carbon materials (Fe@N-C) from functionalized metal-organic frameworks (MOFs, MET-6). Embedding Fe nanoparticles into the carbon skeleton increases the graphitization degree and the proportion of graphitic N as well as promotes the formation of mesopores in the catalyst. The Fe@N-C-30 catalyst showed the excellent ORR activity in alkaline solutions (E0 = 0.97 V vs. RHE, E1/2 = 0.89 V vs. RHE). Moreover, the Fe@N-C-30 catalyst exhibited better methanol resistance and long-term stability when compared to commercial Pt/C. The superior ORR performance could be attributed to the combination of high electrochemical surface area, relative high portion of graphitic-N, unique porous structures and the synergistic effect between the encapsulated Fe particles and the N-doped carbon layer. This work provides a promising method to construct efficient non-precious-metal ORR catalyst through MOFs.

Keywords

Metal-organic frameworks / Porous structures / Fe nanoparticles

Cite this article

Download citation ▾
Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang. Fe Nanoparticles Encapsulated in N-Doped Porous Carbon for Efficient Oxygen Reduction in Alkaline Media. Journal of Electrochemistry, 2023, 29(5): 2210241 DOI:10.13208/j.electrochem.2210241

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu J, Zhang C X, Sun M Z, Qi Q L, Luo S X, Song H C, Xiao J Y, Huang B L, Leung M K H, Zhang Y J. Ultrastable bimetallic Fe2Mo for efficient oxygen reduction reaction in pH-universal applications[J]. Nano Res., 2022, 15(6): 4950-4957.

[2]

Liu M M, Zhang R Z, Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications[J]. Chem. Rew., 2014, 114(10): 5117-5160.

[3]

Xu L Y, Yu M Z, Yang P J, Wang Z Y, Qiu J S. Caging porous Co-N-C nanocomposites in 3D graphene as active and aggregation-resistant electrocatalyst for oxygen reduction reaction[J]. J. Electrochem., 2018, 24(6): 715-725.

[4]

Ye L, Chai G L, Wen Z H. Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction[J]. Adv. Funct. Mater., 2017, 27(14): 8.

[5]

Zaman S, Huang L, Douka A I, Yang H, You B, Xia B Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angew. Chem. Int. Ed., 2021, 60(33): 17832-17852.

[6]

Zhang X R, Lyu D D, Mollamahale Y B, Yu F, Qing M, Yin S B, Zhang X Y, Tian Z Q, Shen P K. Critical role of iron carbide nanodots on 3D graphene based nonprecious metal catalysts for enhancing oxygen reduction reaction[J]. Electrochim. Acta, 2018, 281: 502-509.

[7]

Liu X, Park M, Kim M G, Gupta S, Wang X J, Wu G, Cho J. High-performance non-spinel cobalt-manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc-air batteries[J]. Nano Energy, 2016, 20: 315-325.

[8]

Sui S, Wang X Y, Zhou X T, Su Y H, Riffat S, Liu C J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells[J]. J. Mater. Chem. A, 2017, 5(5): 1808-1825.

[9]

Li T, Zhao H X, Wang R L, Wang S Y. Carbon-based, metal-free electrocatalysts for renewable energy technologies[J]. Prog. Mater. Sci., 2021, (116): 313-334.

[10]

Prati L, Chan-Thaw C E, Campisi S, Villa A. N-modified carbon-based materials: Nanoscience for catalysis[J], Chem. Rec., 2016, 16(5): 2187-2197.

[11]

Jaleh B, Nasrollahzadeh M, Eslamipanah M, Nasri A, Shabanlou E, Manwar N R, Zboril R, Fornasiero P, Gawande M B. The role of carbon-based materials for fuel cells performance[J]. Carbon, 2022, 198: 301-352.

[12]

Zhang J, Zhang J J, He F, Chen Y J, Zhu J W, Wang D L, Mu S C, Yang H Y. Defect and doping Co-engineered non-metal nanocarbon ORR electrocatalyst[J]. Nanomicro Lett., 2021, 13(1): 65.

[13]

Wang Y C, Lai Y J, Song L, Zhou. Z Y, Liu J G, Wang Q, Yang X D, Chen C, Shi W, Zheng Y P, Rauf M, Sun S G. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density[J]. Angew. Chem. Int. Ed., 2015, 54(34): 9907-9910.

[14]

Jin Z, Nie H, Yang Z, Zhang J, Liu Z, Xu X J, Huang S M. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction[J]. Nanoscale, 2012, 4(20): 6455-6460.

[15]

Gao J, Wang Y, Wu H, Liu X, Wang L L, Yu Q L, Li A W, Wang H, Song C Q, Gao Z R, Peng M, Zhang M T, Ma N, Wang J O. Construction of a sp3/sp2carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 58(42): 15089-15097.

[16]

Kim D W, Li O L, Saito N. Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials[J]. Phys. Chem. Chem. Phys., 2015, 17(1): 407-413.

[17]

Wei P, Li X G, He Z M, Sun X P, Liang Q R, Wang Z Y, Fang C, Li Q, Yang H, Han J T, Huang Y H. Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries[J]. Chem. Eng. J., 2021, 422:130134.

[18]

He M, Song S J, Wang P, Fang Z, Wang W W, Yuan X L, Li C Y, Li H, Song W Y, Luo D, Li Z X. Carbon doped cobalt nanoparticles stabilized by carbon shell for highly efficient and stable oxygen reduction reaction[J]. Carbon, 2022, 196: 483-492.

[19]

Du L, Gao X Y, Li Z, Wang G Y, Wen Z, Yang C C, Jiang Q. Metal-organic frameworks derived Co/N-doped carbon nanonecklaces as high-efficient oxygen reduction reaction electrocatalysts[J]. Int. J. Hydrogen Energy, 2022, 47(92): 39133-39145.

[20]

Ni B X, Wu L M, Chen R, Shi C X, Chen T H. Fe/Co-based nanoparticles encapsulated in heteroatom-doped carbon electrocatalysts for oxygen reduction reaction[J]. Sci. China Mater., 2019, 62(11): 1626-1641.

[21]

Gao J, Ma N, Zheng Y M, Zhang J F, Gui J Z, Guo C K, An H Q, Tan X Y, Yin Z, Ma D. Cobalt/nitrogen-doped porous carbon nanosheets derived from polymerizable ionic liquids as bifunctional electrocatalyst for oxygen evolution and oxygen reduction reaction[J]. ChemCatChem, 2016, 9(9): 1601-1609.

[22]

Wang C X, Yuan H F, Yu F, Zhang J, Li Y Y, Bao W T, Wang Z M, Lu K, Yu J, Bai G, Wang G, Peng B H, Zhang L L. Enhanced oxygen reduction reaction performance of Co@N-C derived from metal-organic frameworks ZIF-67 via a continuous microchannel reactor[J]. Chinese Chem. Lett., 2023, 34(1): 107128.

[23]

Sun M, Li Z J, Liu Y Y, Guo D F, Xie Z Y, Huang Q Z. The synthesis of Fe/N-C@CNFs and its electrochemical performance toward oxygen reduction reaction[J]. Int. J. Hydrogen Energy, 2020, 45(56): 31892-31901.

[24]

Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Sun G Q, Bao X H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2013, 52(1): 389-393.

[25]

Liu F, Zhang X Q, Zhang X L, Wang L L, Liu M M, Zhang J J. Dual-template strategy for electrocatalyst of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for oxygen reduction reaction[J]. J. Colloid Inter. Sci., 2021, 581: 523-532.

[26]

Zulys A, Yulia F, Muhadzib N, Nasruddin. Biological metal-organic frameworks (Bio-MOFs) for CO2 Capture[J]. Ind. Eng. Chem. Res., 2020, 60(1): 37-51.

[27]

Li S, Feng C, Xie Y H, Guo C Y, Zhang L G, Wang J D. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor[J]. J. Alloys Compd., 2022, 911: 11.

[28]

Xu M J, Liu J, Ge J J, Liu C P, Xing W. Research progress of metal-nitrogen-carbon catalysts toward oxygen reduction reaction inm changchun institute of applied chemistry[J]. J. Electrochem., 2020, 26(4): 464-473.

[29]

Tong H G, Wang C L, Lu J, Chen S, Yang K, Huang M X, Yuan Q, Chen Q W. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage[J]. Small, 2020, 16(43): e2002771.

[30]

Morales D M, Risch M. Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance[J]. J. Phys.: Energy, 2021, 3(3): 034013.

[31]

Nishihara Y, Nakajima Y, Akashi A, Tsujino N, Takahashi E, Funakoshi K I, Higo Y. Isothermal compression of face-centered cubic iron[J]. Am. Mineral., 2012, 97(8-9): 1417-1420.

[32]

Sevilla M, Antonio B F. Catalytic graphitization of templated mesoporous carbons[J]. Carbon, 2006, 44(3): 468-474.

[33]

Yu H Y, Fisher A, Cheng D J, Cao D P. Cu, N-codoped hierarchical porous carbons as electrocatalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2016, 8(33): 21431-21439.

[34]

Liu M C, Guo X H, Hu L B, Yuan H F, Wang G, Dai B, Zhang L L, Yu F. Fe3O4/Fe3C@nitrogen-doped carbon for enhancing oxygen reduction reaction[J]. ChemNanoMat, 2019, 5(2): 187-193.

[35]

Yan C C, Li H B, Ye Y F, Wu H H, Cai F, Si R, Xiao J P, Miao S, Xie S H, Yang F,. Li Y S, Wang G X, Bao X H. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy Environ. Sci., 2018, 11(5): 1204-1210.

[36]

Li B, Sasikala S P, Kim D H, Bak J, Kim D, Cho E A, Kim S O. Fe-N4 complex embedded free-standing carbon fabric catalysts for higher performance ORR both in alkaline & acidic media[J]. Nano energy, 2019, 56: 524-530.

[37]

Peng X M, Wu J Q, Zhao Z L, Wang X, Dai H L, Li Y M, Wei Y, Xu G P, Hu F P. High efficiency degradation of tetracycline by peroxymonosulfate activated with Fe/NC catalysts: Performance, intermediates, stability and mechanism[J]. Environ. Res., 2022, 205: 112538.

[38]

Guo J H, Zhang S, Zheng M, Tang J, Liu L, Chen J M, Wang X C. Graphitic-N-rich N-doped graphene as a high performance catalyst for oxygen reduction reaction in alkaline solution[J]. Int. J. Hydrogen Energy, 2020, 45(56): 32402-32412.

[39]

Li X G, Ni L, Zhou J H, Xu L, Lu C L, Yang G X, Ding W P, Hou W H. Encapsulation of Fe nanoparticles into an N-doped carbon nanotube/nanosheet integrated hierarchical architecture as an efficient and ultrastable electrocatalyst for the oxygen reduction reaction[J]. Nanoscale, 2020, 12(26): 13987-13995.

[40]

Liu D, Srinivas K, Chen X, Ma F, Zhang X J, Wang X Q, Wang B, Chen Y F. Dual Fe, Zn single atoms anchored on carbon nanotubes inlaid N, S-doped hollow carbon polyhedrons for boosting oxygen reduction reaction[J]. J Colloid Inter. Sci., 2022, 624: 680-690.

[41]

Wang N N, Li J, Hei J P, Chen X D, Yin X J, Cai C W, Li M L, Cui L F. ɛ-Fe3N@N-doped carbon core-shell nanoparticles encapsulated in bamboo-like carbon nanotubes for oxygen reduction reaction[J]. Mater. Chem. Phys., 2022, 291: 126769.

[42]

Talukder N, Wang Y, Nunna B B, Lee E S. An in-depth exploration of the electrochemical oxygen reduction reaction (ORR) phenomenon on carbon-based catalysts in alkaline and acidic mediums[J]. Catalysts, 2022, 12(7): 21.

[43]

Li X, Ni L, Zhou J H, Xu L, Lu C N, Yang G X, Ding W P, Hou W H. Encapsulation of Fe nanoparticles into an N-doped carbon nanotube/nanosheet integrated hierarchical architecture as an efficient and ultrastable electrocatalyst for the oxygen reduction reaction[J]. Nanoscale, 2020, 12(26): 13987-13995.

[44]

Park S, Her M, Shin H J, Hwang W, Sung Y E. Maximizing the active site densities of single-atomic Fe-N-C electrocatalysts for high-performance anion membrane fuel cells[J]. ACS Appl. Energy Mater., 2021, 4: 1459-1466.

[45]

Freitas W D S, Pico M P P, D’Epifanio A, Mecheri B. Nanostructured Fe-N-C as bifunctional catalysts for oxygen reduction and hydrogen evolution[J]. Catalysts, 2021, 11: 1525.

[46]

Gao J, Ma N, Zheng Y M, Zheng J F, Gui J Z, Guo C K, An H Q, Yin Z, Ma D. Cobalt/nitrogen-doped porous carbon nanosheets derived from polymerizable ionic liquids as bifunctional electrocatalyst for oxygen evolution and oxygen reduction reaction[J]. ChemCatChem, 2017, 9(9): 1601-1609.

[47]

Yuan K, Lutzenkirchen-Hecht D, Li L B, Shuai L, Li Y Z, Cao R, Qiu M, Zhuang X D, Leung M K H, Chen Y W, Scherf U. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination[J]. J. Am. Chem. Soc., 2020, 142:2404-2412.

[48]

Zhang X B, Han X, Jiang Z, Xu J, Chen L N, Xue Y K, Nie A, Xie Z X, Kuang Q, Zheng L S. Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-air battery[J]. Nano Energy, 2020, 71: 104547.

[49]

Ye Y F, Li H B, Cai F, Yan C C, Si R, Miao S, Li Y S, Wang G X, Bao X H. Two-dimensional mesoporous carbon doped with Fe-N active sites for efficient oxygen reduction[J]. ACS Catal., 2017, 7: 7638-7646.

[50]

Jiao L, Wan G, Zhang R, Zhou H, Yu S H, Jiang H L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media[J]. Angew. Chem. Int. Ed., 2018, 57: 8525-8529.

[51]

Li G N, Zhang J J, Li W S, Fan K, Xu C J. 3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/Fe3C for efficient oxygen reduction reaction and supercapacitor[J]. Nanoscale, 2018, 10(19): 9252-9260.

[52]

Mahmood J, Li F, Kim C, Choi H J, Gwon O, Jung S M, Seo J M, Cho S J, Ju Y W, Jeong H Y, Kim G. Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst[J]. Nano Energy, 2018, 44: 304-310.

[53]

Liu S, Li C, Zachman M J, Zeng Y C, Yu H R, Li B Y, Wang M Y, Braaten J, Liu J W,. Meyer III H M, Lucero M, Kropf A P, Alp E E, Gong Q, Shi Q R, Feng Z X, Xu H, Wang G F, Myers D J, Xie J, Cullen D A, Litster S, Wu Gang. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells[J]. Nat. Energy, 2022, 7(7): 652-663.

[54]

Park H S, Han S B, Kwak D H, Han J H. Park K W. Fe nanoparticles encapsulated in doped graphitic shells as high-performance and stable catalysts for oxygen reduction reaction in an acid medium[J]. J. Catal., 2019, 370: 130-137.

[55]

Jiang X L, Yang Y Y, Zhu C L, Zhang R, Wu F, Wu H H, Wang J. Atomically dispersed Fe-Nx sites doped mesopore-dominated carbon nanodisks towards efficient oxygen reduction[J]. Int. J. Hydrogen Energy, 2022, 47(78): 33308-33318.

[56]

Wang Y, Chen Y, Wang Z W, Li P, Zhao J Y, Zhao H Y, Li D, He T X, Wei Y T, Su Y Q, Xiao C H. Boron doping induced electronic reconfiguration of Fe-Nx sites in N-doped carbon matrix for efficient oxygen reduction reaction in both alkaline and acidic media[J]. Int. J. Hydrogen Energy, 2022, 47(43): 18663-18674.

[57]

Bai J, Ge W, Zhou P, Xu P, Wang L, Zhang J, Jiang X, Li X, Zhou Q. Precise constructed atomically dispersed Fe/Ni sites on porous nitrogen-doped carbon for oxygen reduction[J]. J. Colloid Inter. Sci., 2022, 616: 433-439.

[58]

Gao J, Hu Y, Wang Y, Lin X, Hu K, Lin X, Xie G, Liu X, Reddy K M, Yuan Q, Qiu H J. MOF structure engineering to synthesize Co-N-C catalyst with richer accessible active sites for enhanced oxygen reduction[J]. Small, 2021, 17(49): e2104684.

[59]

Cui L F, Chen M X, Huo G, Fu X Z, Luo J G. FeCo nanoparticles wrapped in N-doped carbon derived from Prussian blue analogue and dicyandiamide as efficient oxygen reduction electrocatalysts for Al-air batteries[J]. Chem. Eng. J., 2020, 395: 125158.

[60]

Li W J, Wang F, Zhang Z G, Min S X. Graphitic carbon layer-encapsulated Co nanoparticles embedded on porous carbonized wood as a self-supported chainmail oxygen electrode for rechargeable Zn-air batteries[J]. Appl. Catal. B, 2022, 317: 121758.

[61]

Liu Z F, Ye D D, Zhu X, Wang S L, Zou Y N, Lan L H, Chen R, Yang Y, Liao Q. ZIF-67-derived Co nanoparticles embedded in N-doped porous carbon composite interconnected by MWCNTs as highly efficient ORR electrocatalysts for a flexible direct formate fuel cell[J]. Chem. Eng. J., 2022, 432: 134192.

PDF (1746KB)

133

Accesses

0

Citation

Detail

Sections
Recommended

/