Effects of Traps on Photo-induced Interfacial Charge Transfer of Ag-TiO2: Photoelectrochemical, Electrochemical and Spectroscopic Characterizations

Zhi-Hao Liang , Jia-Zheng Wang , Dan Wang , Jian-Zhang Zhou , De-Yin Wu

Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (8) : 2208101

PDF (3186KB)
Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (8) :2208101 DOI: 10.13208/j.electrochem.2208101
ARTICLE
research-article

Effects of Traps on Photo-induced Interfacial Charge Transfer of Ag-TiO2: Photoelectrochemical, Electrochemical and Spectroscopic Characterizations

Author information +
History +
PDF (3186KB)

Abstract

In the field of metal-semiconductor composites based plasmon-mediated chemical reactions, a clear and in-depth understanding of charge transfer and recombination mechanisms is crucial for improving plasmonic photocatalytic efficiency. However, the plasmonic photocatalytic reactions at the solid-liquid interface of the electrochemical systems involve complex processes with multiple elementary steps, multiple time scales, and multiple controlling factors. Herein, the combination of photoelectrochemical and electrochemical as well as spectroscopic characterizations has been successfully used to study the effects of traps on the photo-induced interfacial charge transfer of silver-titanium dioxide (Ag-TiO2). The results show that the increase of surface hydroxyl groups may be the key reason leading to the increase of traps after the Ag deposition on the surface of TiO2. The increased traps of Ag-TiO2, including deep and shallow traps, subsequently lead to the quenching of fluorescence and the reduction of photocurrent in the UV region. But the enhanced trap recombination may also prolong the lifetime of carriers. The modulation of traps is bound to affect the interfacial charge transfer, and thus, change the amount and lifetime of hot carriers, which can be exploited to manipulate the molecular reactions at the Ag surface. Our work highlights the importance of traps at metal-semiconductor electrodes that may help utilize the hot carriers in plasmonic mediated chemical reactions.

Keywords

Plasmonic / Silver-titanium dioxide / Trap state / Charge transfer / Photoelectrochemical Characterization

Cite this article

Download citation ▾
Zhi-Hao Liang, Jia-Zheng Wang, Dan Wang, Jian-Zhang Zhou, De-Yin Wu. Effects of Traps on Photo-induced Interfacial Charge Transfer of Ag-TiO2: Photoelectrochemical, Electrochemical and Spectroscopic Characterizations. Journal of Electrochemistry, 2023, 29(8): 2208101 DOI:10.13208/j.electrochem.2208101

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhan C, Chen X J, Yi J, Li J F, Wu D Y, Tian Z Q. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions[J]. Nat. Rev. Chem., 2018, 2(9): 216-230.

[2]

Zhang Y C, He S, Guo W X, Hu Y, Huang J W, Mulcahy J R, Wei W D. Surface-plasmon-driven hot electron photochemistry[J]. Chem. Rev., 2018, 118(6): 2927-2954.

[3]

Gelle A, Jin T, de la Garza L, Price G D, Besteiro L V, Moores A. Applications of plasmon-enhanced nanocatalysis to organic transformations[J]. Chem. Rev., 2020, 120(2): 986-1041.

[4]

Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nat. Nanotechnol., 2015, 10(1): 25-34.

[5]

Moon C W, Choi M J, Hyun J K, Jang H W. Enhancing photoelectrochemical water splitting with plasmonic Au nanoparticles[J]. Nanoscale Adv., 2021, 3(21): 5981-6006.

[6]

Ingram D B, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface[J]. J. Am. Chem. Soc., 2011, 133(14): 5202-5205.

[7]

Wang S J, Zhang X Y, Su D, Yan X, Zhou H L, Xue X M, Wang Y F, Zhang T. Enhanced photocatalytic reactions via plasmonic metal-semiconductor heterostructures combing with solid-liquid-gas interfaces[J]. Appl. Catal. B-Environ., 2022, 306: 121102.

[8]

Kim Y, Creel E B, Corson E R, McCloskey B D, Urban J J, Kostecki R. Surface-plasmon-assisted photoelectrochemical reduction of CO2 and NO3- on nanostructured silver electrodes[J]. Adv. Energy Mater., 2018, 8(22): 1800363

[9]

Huang H N, Shi R, Li Z H, Zhao J Q, Su C L, Zhang T R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angew. Chem. Int. Ed., 2022, 61(17): e202200802.

[10]

Saravanan R, Manoj D, Qin J Q, Naushad M, Gracia F, Lee A F, Khan M M, Gracia-Pinilla M A. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production[J]. Process Saf. Enivron. Protect., 2018, 120: 339-347.

[11]

Christopher P, Ingram D B, Linic S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons[J]. J. Phys. Chem. C, 2010, 114(19): 9173-9177.

[12]

Furube A, Du L, Hara K, Katoh R, Tachiya M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. J. Am. Chem. Soc., 2007, 129(48): 14852-14853.

[13]

Zhang Y C, Guo W X, Zhang Y L, Wei W D. Plasmonic photoelectrochemistry: In view of hot carriers[J]. Adv. Mater., 2021, 33(46): 2006654.

[14]

Ichinose H, Terasaki M, Katsuki H. Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate[J]. J. Sol-Gel Sci. Technol., 2001, 22(1-2): 33-40.

[15]

Damato T C, de Oliveira C C S, Ando R A, Camargo P H C. A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion[J]. Langmuir, 2013, 29(5): 1642-1649.

[16]

Yang L B, Jiang X, Ruan W D, Yang J X, Zhao B, Xu W Q, Lombardi J R. Charge-transfer-induced surface-enhanced raman scattering on Ag-TiO2 nanocomposites[J]. J. Phys. Chem. C, 2009, 113(36): 16226-16231.

[17]

Zhang Y, Chen J R, Tang H, Xiao Y G, Qiu S F, Li S J, Cao S S. Hierarchically-structured SiO2-Ag@TiO2 hollow spheres with excellent photocatalytic activity and recyclability[J]. J. Hazard. Mater., 2018, 354: 17-26.

[18]

Hong D C, Lyu L M, Koga K, Shimoyama Y, Kon Y. Plasmonic Ag@TiO2 core-shell nanoparticles for enhanced CO2 photoconversion to CH4[J]. ACS Sustain. Chem. Eng., 2019, 7(23): 18955-18964.

[19]

Kohtani S, Kawashima A, Miyabe H. Reactivity of trapped and accumulated electrons in titanium dioxide photocatalysis[J]. Catalysts, 2017, 7(10): 303

[20]

Zhang L W, Mohamed H H, Dillert R, Bahnemann D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review[J]. J. Photochem. Photobiol. C-Photochem. Rev., 2012, 13(4): 263-276.

[21]

Mercado C, Seeley Z, Bandyopadhyay A, Bose S, McHale J L. Photoluminescence of dense nanocrystalline titanium dioxide thin films: Effect of doping and thickness and relation to gas sensing[J]. ACS Appl. Mater. Interfaces, 2011, 3(7): 2281-2288.

[22]

Wang H L, He J J, Boschloo G, Lindström H, Hagfeldt A, Lindquist S E. Electrochemical investigation of traps in a nanostructured TiO2 film[J]. J. Phys. Chem. B, 2001, 105(13): 2529-2533.

[23]

Naseri N, Kim H, Choi W, Moshfegh A Z. Optimal Ag concentration for H2 production via Ag: TiO2 nanocomposite thin film photoanode[J]. Int. J. Hydrog. Energy, 2012, 37(4): 3056-3065.

[24]

Hernández S, Gerardi G, Bejtka K, Fina A, Russo N. Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis[J]. Appl. Catal. B, 2016, 190: 66-74.

[25]

DuChene J S, Sweeny B C, Johnston-Peck A C, Su D, Stach E A, Wei W D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis[J]. Angew. Chem. Int. Ed., 2014, 53(30): 7887-7891.

[26]

Moon S Y, Song H C, Gwag E H, Nedrygailov I I, Lee C, Kim J J, Doh W H, Park J Y. Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO2 nanotube arrays[J]. Nanoscale, 2018, 10(47): 22180-22188.

[27]

Moser J E. Perovskite photovoltaics: Slow recombination unveiled[J]. Nat. Mater, 2017, 16(1): 4-6.

PDF (3186KB)

116

Accesses

0

Citation

Detail

Sections
Recommended

/