Charge-Dependence of Dissolution/Deposition Energy Barrier on Cu(111) Electrode Surface by Multiscale Simulations

Hang Qiao , Yong Zhu , Sheng Sun , Tong-Yi Zhang

Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (10) : 2205171 -2205171.

PDF (2659KB)
Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (10) :2205171 -2205171. DOI: 10.13208/j.electrochem.2205171
Articles
research-article

Charge-Dependence of Dissolution/Deposition Energy Barrier on Cu(111) Electrode Surface by Multiscale Simulations

Author information +
History +
PDF (2659KB)

Abstract

Behaviors of electrified interface under different applied potentials/charges play the central role in electroplating process and electrochemical corrosion. The mechanism, however, is unclear yet for a surface atom dissolving/depositing from/on an electrode surface under an applied potential. The energy barrier along the reaction path is the key variable. The present work conductes hybrid first-principle/hybrid calculations to study the direct and indirect dissolution/deposition of a Cu atom on perfect/stepped Cu(111) planar electrodes in an electrolyte under different excess charges. Energy profiles present a linear relationship between the energies of the initial/final state and the activation state of different reaction paths under different applied charges, obeying the Brønsted-Evans-Polanyi relation. The activation energy is also a linear or quadratic function of charge density per unit surface area during direct and indirect dissolution/deposition. These simple relations provide a simple way to deduce the activation energy from the energy of stable states under different charge levels. Analytical formula indicates the occurrence of automatic dissolution from step sites at the applied surface charge density larger than 0.135 |e|/Å2. When the applied charge density is between 0.086 |e|/Å2 and 0.105 |e|/Å2, the energy barrier for electrodeposition to the planar surface becomes smaller than zero, while there is a small barrier for surface diffusion, indicating indirect deposition with surface diffusion as the rate determining step. When the applied surface charge density further decreases to lower than 0.086 |e|/Å2, the concentration effects of the available deposition sites on steps and planar surface are ignored, becoming mainly the direct deposition because of the energy barrier of surface diffusion.

Keywords

Deposition and dissolution / Brønsted-Evans-Polanyi relation / Electrified interface / First-principle calculations / Continuum electrolyte

Cite this article

Download citation ▾
Hang Qiao, Yong Zhu, Sheng Sun, Tong-Yi Zhang. Charge-Dependence of Dissolution/Deposition Energy Barrier on Cu(111) Electrode Surface by Multiscale Simulations. Journal of Electrochemistry, 2023, 29(10): 2205171-2205171 DOI:10.13208/j.electrochem.2205171

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koch G, Varney J, Thompson N, Moghissi O, Gould M, Payer J. International measures of prevention, application, and economics of corrosion technologies study[M]. USA: NACE International, 2016: 2-3.

[2]

Hou B R, Li X G, Ma X M, Du C W, Zhang D W, Zheng M, Xu W C, Lu D Z, Ma F B. The cost of corrosion in china[J]. NPJ Mater. Degrad., 2017, 1(7579): 29-33.

[3]

Cui K. Dictionary of safety engineering titles[M]. China: Chemical Industry Press, 1995.

[4]

Huang Y C. Metal corrosion and protection principles[M]. China: Shanghai Jiao Tong University Press, 1989.

[5]

Zhang B H, Cong W B, Yang P. Electrochemical corrosion and protection of metals[M]. China: Chemical Industry Press, 2005.

[6]

Rive D L. Electrochemical theory of corrosion of zinc in acid solutions[J]. Ann. Chim. Phys., 1830, 43: 425.

[7]

Gamburg Y D, Zangari G. Theory and practice of metal electrodeposition[M]. USA: Springer Science & Business Media, 2011.

[8]

Schlesinger M, Paunovic M. Modern electroplating[M] USA: John Wiley & Sons, 2011.

[9]

Knacke O, Stranski I N. Die theorie des kristallwachstums. In: Ergebnisse der exakten naturwissenschaften[M]. USA: Springer, 1952. 383-427.

[10]

Lorenz W. Kristallisationsüberspannungen[J]. Z. Naturfors. Sect. A-J. Phys. Sci., 1954, 9(9): 716-724.

[11]

Lorenz W. Oszillographische Überspannungsmessungen. I[J]. Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys., 1954, 58(10): 912-918.

[12]

Plieth W. The concept of dwell times in a kinetic model of alloy deposition[J]. Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys., 2003, 217(4): 383-394.

[13]

Conway B E, Bockris J O M. The mechanism of electrolytic metal deposition[J]. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 1958, 248(1254): 394-403.

[14]

Vitanov T, Popov A, Budevski E. Mechanism of electrocrystallization[J]. J. Electrochem. Soc., 1974, 121(2): 207.

[15]

Zha Q X. Introduction to kinetics of electrode process[M]. Beijing: Science Press, 2002.

[16]

Groenenboom M C, Moffat T P, Schwarz K A. Halide-induced step faceting and dissolution energetics from atomistic machine learned potentials on Cu (100)[J]. J. Phys. Chem. C, 2020, 124(23): 12359-12369.

[17]

Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T. Jdftx: software for joint density-functional theory[J]. SoftwareX, 2017, 6: 278-284.

[18]

Letchworth-Weaver K, Arias T. Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge[J]. Phys. Rev. B, 2012, 86(7): 075140.

[19]

Petrosyan S, Rigos A, Arias T. Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution[J]. J. Phys. Chem. B, 2005, 109(32): 15436-15444.

[20]

Jiang H, Sun S, Zhang T Y. Potential and distance dependent charge transfer: hybrid first-principles/continuum calculations[J]. Comput. Mater. Sci., 2019, 169: 109121.

[21]

Jiang H X, Sun Y Z, Sun S, Zhang T Y. Dissolving mechanisms of zinc single crystal electrode under couplings of strain and electrode potential by multiscale calculationsand symbolic regression[J]. Shanghai Metals, 2020, 42(1): 104-110.

[22]

Bronsted J. Acid and basic catalysis[J]. Chem. Rev., 1928, 5(3): 231-338.

[23]

Greeley J, Mavrikakis M. Alloy catalysts designed from first principles[J]. Nat. Mater., 2004, 3(11): 810-815.

[24]

Xu Y, Ruban A V, Mavrikakis M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys[J]. J. Am. Chem. Soc., 2004, 126(14): 4717-4725.

[25]

Nilekar A U, Greeley J, Mavrikakis M. A simple rule of thumb for diffusion on transition-metal surfaces[J]. Angew. Chem. Int. Ed., 2006, 118(42): 7204-7207.

[26]

Gomes J R, Viñes F, Illas F, Fajín J L. Implicit solvent effects in the determination of brønstedevans-polanyi relationships for heterogeneously catalyzed reactions[J]. Phys. Chem. Chem. Phys., 2019, 21(32): 17687-17695.

[27]

Sundararaman R, Schwarz K A, Letchworth-Weaver K, Arias T. Spicing up continuum solvation models with salsa: The spherically averaged liquid susceptibility ansatz[J]. the J. Chem. Phys., 2015, 142(5): 054102.

[28]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865.

[29]

Seebauer E, Allen C. Estimating surface diffusion cofficients[J]. Prog. Surf. Sci., 1995, 49(3): 265-330.

PDF (2659KB)

89

Accesses

0

Citation

Detail

Sections
Recommended

/