Dependence of Heat Transfer Model on the Structure of Electrically Coil-Heated Microelectrodes

Ju Li , Sen Yang , Jian-Jun Sun

Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (9) : 2203211

PDF (1667KB)
Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (9) :2203211 DOI: 10.13208/j.electrochem.2203211
ARTICLE
research-article

Dependence of Heat Transfer Model on the Structure of Electrically Coil-Heated Microelectrodes

Author information +
History +
PDF (1667KB)

Abstract

Electrically heated microelectrodes have gained much attention in electroanalytical chemistry in recent years. It has been shown that the promotion of mass transport and reaction kinetics at high-temperatures often results in increased current signals. However, there is no study about the heat transfer inner the microelectrodes which is necessary for the design and operation for microsensors. This report introduces a finite element software (COMSOL) to analyze the factors that influence the surface temperature (Ts), which is crucial for the heating ability of micro-disk electrodes with coils. Distances between the electrode surface and the bottom of the heated copper wire also have a good linear relationship with Ts (R2 = 1). Considering the cost, 25-mm length of the gold wire is enough to obtain a relatively high Ts. In addition, the highest Ts can be obtained when the electrode material is gold and the diameter of the gold disk is 0.2 mm. The relationship of diameters of heated copper wires with currents to obtain different temperatures has also been studied. It is expectable that the simulation results can be used to significantly help the design and operation of electrically heated microsensors in practical applications.

Keywords

Electrically heated microelectrodes / Heat transfer / Micro-disk / Coil-heated / Model / COMSOL / Temperature distribution

Cite this article

Download citation ▾
Ju Li, Sen Yang, Jian-Jun Sun. Dependence of Heat Transfer Model on the Structure of Electrically Coil-Heated Microelectrodes. Journal of Electrochemistry, 2023, 29(9): 2203211 DOI:10.13208/j.electrochem.2203211

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gründler P, Zerihun T, Möller A, Kirbs A. A simple method for heating micro electrodes in-situ[J]. J. Electroanal. Chem., 1993, 360: 309-314.

[2]

Grundler P, Zerihun T, Kirbs A, Grabow H. Simultaneous joule heating and potential cycling of cylindrical microelectrodes[J]. Anal. Chim. Acta, 1995, 305(1-3): 232-240.

[3]

Zerihun T, Griindler P. Electrically heated cylindrical microelectrodes.The reduction of dissolved oxygen on Pt[J]. J. Electroanal. Chem., 1996, 404: 243-248.

[4]

Valdes J L, Miller B. Thermal modulation of rotating disk electrodes: Steady-state response[J]. J. Phys. Chem., 1988, 92: 525-532.

[5]

Gründler P, Degenring D. The limits of aqueous hot-wire electrochemistry: Near-critical and supercritical fluids in electrochemical sensors?[J]. Electroanalysis, 2001, 13: 755-759.

[6]

Baranski A S. Hot microelectrodes[J]. Anal. Chem., 2002, 74: 1294-1301.

[7]

Wildgoose G G, Giovanelli D, Lawrence N S, Compton R G. High-temperature electrochemistry: A review[J]. Electroanalysis, 2004, 16(6): 421-433.

[8]

Gründler P, Flechsig G U. Principles and analytical applications of heated electrodes[J]. Microchim. Acta, 2006, 154(3-4): 175-189.

[9]

Grundler P, Kirbs A, Dunsch L. Modern thermoelectrochemistry[J]. Chemphyschem, 2009, 10(11): 1722-1746.

[10]

Cutress I J, Marken F, Compton R G. Microwave-assisted electroanalysis: A review[J]. Electroanalysis, 2009, 21(2): 113-123.

[11]

Flechsig G U, Walter A. Electrically heated electrodes: Practical aspects and new developments[J]. Electroanalysis, 2012, 24(1): 23-31.

[12]

Wang J, Grulndler P, Flechsig G U, Jasinski M, Rivas G, Sahlin E, Paz J L L. Stripping analysis of nucleic acids at a heated carbon paste electrode[J]. 2000, 72, 16: 3752-3756.

[13]

Tsai Y C, Coles B A, Compton R G, Marken F. Microwave activation of electrochemical processes: Enhanced electrodehalogenation in organic solvent media[J]. J. Am. Chem. Soc., 2002, 124(33): 9784-9788.

[14]

Wei H, Sun J J, Guo L, Li X, Chen G N. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode[J]. Chem. Commun., 2009, (20): 2842-2844.

[15]

Walter A, Surkus A E, Flechsig G U. Hybridization detection of enzyme-labeled DNA at electrically heated electrodes[J]. Anal. Bioanal. Chem., 2013, 405(11): 3907-3911.

[16]

Huang Z X, Yang S, Guo J W, Wu S H, Sun J J, Chen G N. Supercooled electrodes[J]. Electrochem. Commun., 2014, 48: 107-110.

[17]

Huang Z X, Yang S, Yao F Z, Xu K X, Zhang J F, Wu S H, Sun J J. Alternate hot and cold electrodes[J]. Electrochem. Commun., 2015, 61: 129-133.

[18]

Yang S, Huang Z X, Hou X H, Cheng F F, Wu S H, Sun J J. A model for understanding the temperature change of an alternate hot and cold micro-band graphite electrode[J]. Electrochem. Commun., 2016, 68: 71-75.

[19]

Yang S, Chen X, Mi Z Z, Chen Z M, Li X D, Sun J J, Wu S H. Temperature-controllable electrodes with a one-parameter calibration[J]. ACS Sens., 2019, 4(6): 1594-1602.

[20]

Chen Z M, Wang Y, Du X Y, Sun J J, Yang S. Temperature-alternated electrochemical aptamer-based biosensor for calibration-free and sensitive molecular measurements in an unprocessed actual sample[J]. Anal. Chem., 2021, 93(22): 7843-7850.

[21]

Ma B, Wang L, He K, Li D G, Liang X D. A lattice boltzmann analysis of the electro-thermo convection and heat transfer enhancement in a cold square enclosure with two heated cylindrical electrodes[J]. Int. J. Therm. Sci., 2021, 164: 106885.

[22]

Wu S H, Zhu B J, Huang Z X, Sun J J. A heated pencil lead disk electrode with direct current and its preliminary application for highly sensitive detection of luteolin[J]. Electrochem. Commun., 2013, 28: 47-50.

[23]

Wu S H, Tang Y, Chen L, Ma X G, Tian S M, Sun J J. Amplified electrochemical hydrogen peroxide reduction based on hemin/g-quadruplex dnazyme as electrocatalyst at gold particles modified heated copper disk electrode[J]. Biosens. Bioelectron., 2015, 73: 41-46.

[24]

Wu S H, Zeng Y F, Chen L, Tang Y, Xu Q L, Sun J J. Amplified electrochemical DNA sensor based on hemin/g-quadruplex dnazyme as electrocatalyst at gold particles modified heated gold disk electrode[J]. Sens. Actuator B-Chem., 2016, 225: 228-232.

[25]

Wu S H, Zhang B, Wang F F, Mi Z Z, Sun J J. Heating enhanced sensitive and selective electrochemical detection of Hg2+ based on T-Hg2+-T structure and exonuclease iii-assisted target recycling amplification strategy at heated gold disk electrode[J]. Biosens. Bioelectron., 2018, 104: 145-151.

[26]

Beckmann A, Coles B A, Compton R G, Gründler P, Marken F, Neudeck A. Modeling hot wire electrochemistry. Coupled heat and mass transport at a directly and continuously heated wire[J]. 2000, 104(4): 764-769.

[27]

Baranski A S. Hot microelectrodes[J]. Anal. Chem., 2002, 74(6): 1294-1301.

[28]

Boika A, Baranski A S. Dielectrophoretic and electrothermal effects at alternating current heated disk microelectrodes[J]. Anal. Chem., 2008, 80: 7392-7400.

[29]

Baranski A S, Boika A. Ultrahigh frequency voltammetry: Effect of electrode material and frequency of alternating potential modulation on mass transport at hot-disk microelectrodes[J]. Anal. Chem., 2012, 84(3): 1353-1359.

[30]

Qiu F, Compton R G, Coles B A, Marken F. Thermal activation of electrochemical processes in a rf-heated channel flow cell: Experiment and finite element simulation[J]. J. Electroanal. Chem., 2000, 492(2): 150-155.

[31]

Gabrielli C, Keddam M, Lizee J F. Frequency analysis of a temperature perturbation technique in electrochemistry : Part i. Theoretical aspects[J]. J. Electroanal. Chem., 1993, 359(1-2): 1-20.

[32]

Gabrielli C. A transfer function approach for a generalized electrochemical impedance spectroscopy[J]. J. Electrochem. Soc., 1994, 141(5): 1147-1157.

[33]

Mahnke N, Markovic A, Duwensee H, Wachholz F, Flechsig G U, van Rienen U. Numerically optimized shape of directly heated electrodes for minimal temperature gradients[J]. Sens. Actuator B-Chem., 2009, 137(1): 363-369.

[34]

Frischmuth K, Visocky P, Gründler P. On modelling heat transfer in chemical microsensors[J]. Int. J. Eng. Sci., 1996, 34(5): 523-530.

[35]

Jenkins D M, Song C, Fares S, Cheng H, Barrettino D. Disposable thermostated electrode system for temperature dependent electrochemical measurements[J]. Sens. Actuator B-Chem., 2009, 137(1): 222-229.

PDF (1667KB)

127

Accesses

0

Citation

Detail

Sections
Recommended

/