P-doped Ru-Pt Alloy Catalyst toward High Performance Alkaline Hydrogen Evolution Reaction

Rong-Qin Huang , Wei-Ping Liao , Meng-Xuan Yan , Shi Liu , Yuan-Ming Li , Xiong-Wu Kang

Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (5) : 2203081

PDF (2451KB)
Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (5) :2203081 DOI: 10.13208/j.electrochem.2203081
ARTICLE
research-article

P-doped Ru-Pt Alloy Catalyst toward High Performance Alkaline Hydrogen Evolution Reaction

Author information +
History +
PDF (2451KB)

Abstract

Electrocatalytic water splitting represents grand promise for hydrogen fuel in modern energy equipment, and the design and fabrication of higher performance catalysts are at the central. Herein, we report the sequential phosphorus (P)-doping into ruthenium (Ru) nanoparticles (Ru-P/C) by thermal annealing of Ru nanoparticles in phosphine (PH3) atmosphere and deposition of extremely low concentration of platinum (Pt) to obtain P-doped Ru-Pt alloy catalyst supported on carbon nanotubes (CNTs), which is denoted as (Ru-P)#Pt/C. The data by X-ray diffraction spectroscopy and transmission electron microscopy show that the Ru nanoparticles existed in the form of hexagonal close-packed (hcp) phase with low crystallinity. The results by high-resolution X-ray photoelectron spectroscopy indicate that Ru was mainly in metallic state, and Pt was slightly and positively charged, ascribing to the bonding with P atoms. This indicates that the highly diluted Pt atoms may be dispersed on the surface of Ru nanoparticles through Ru-P-Pt bonds. Accordingly, the as-prepared (Ru-P)#Pt/C alloy catalysts displayed excellent alkaline hydrogen evolution activity, revealing only 17 mV vs. RHE at a current density of 10 mA·cm-2 and a Tafel slope value of 27 mV·dec-1, superior to those of the controlled samples Ru-P/C and trace amount of Pt loaded P-doped CNTs (Pt/C-P). Density functional theory (DFT) calculation suggests that P-doping into Ru can enhance the adsorption of water molecules and the activation for water splitting, while the Pt site on Ru-Pt alloy can behave as the hydrogen desorption site. Thus, the superior performance of (Ru-P)#Pt/C alloy catalyst might be attributed to the synergistic effect of P-doped Ru sites and Pt sites, which significantly improves the alkaline hydrogen evolution reaction kinetics.

Keywords

Ru-Pt alloy / Phosphorus-doping / Synergistic effect / Dual active sites

Cite this article

Download citation ▾
Rong-Qin Huang, Wei-Ping Liao, Meng-Xuan Yan, Shi Liu, Yuan-Ming Li, Xiong-Wu Kang. P-doped Ru-Pt Alloy Catalyst toward High Performance Alkaline Hydrogen Evolution Reaction. Journal of Electrochemistry, 2023, 29(5): 2203081 DOI:10.13208/j.electrochem.2203081

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y, Luo Z Y, Ge J J, Liu C P, Xing W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.

[2]

Zhao G Q, Rui K, Dou S X, Sun W P. Heterostructures for electrochemical hydrogen evolution reaction: A review[J]. Adv. Funct. Mater., 2018, 28(43): 1803291.

[3]

Zou H H, Li W Q, Song C H, Cao L M, Zhang X F, Zhu X Y, Du Z Y, Zhang J, Zhong S L, He C T. Disclosing the active integration structure and robustness of a pseudo-tri-component electrocatalyst toward alkaline hydrogen evolution[J]. J. Energy Chem., 2022, 72: 210-216.

[4]

Wei Y, Soomro R A, Xie X Q, Xu B. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes[J]. J. Energy Chem., 2021, 55: 244-255.

[5]

Wang X L, Cong Y Y, Qiu C X, Wang S J, Qin J Q, Song Y J. Core-shell structured Ru@PtRu nanoflower electrocatalysts toward alkaline hydrogen evolution reaction[J]. J. Electrochem., 2020, 26(6): 815-824.

[6]

Zhang T J, Walsh A G, Yu J H, Zhang P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities[J]. Chem. Soc. Rev., 2021, 50(1): 569-588.

[7]

Hannagan R T, Giannakakis G, Flytzani-Stephanopoulos M, Sykes E C H. Single-atom alloy catalysis[J]. Chem. Rev., 2020, 120(21): 12044-12088.

[8]

Liu Y, Liu S L, Wang Y, Zhang Q H, Gu L, Zhao S C, Xu D D, Li Y F, Bao J C, Dai Z H. Ru modulation effects in the synthesis of unique rod-like Ni@Ni2p-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance[J]. J. Am. Chem. Soc., 2018, 140(8): 2731-2734.

[9]

Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nature Nanotech., 2017, 12(5): 441-446.

[10]

Wang X S, Zhu Y H, Vasileff A, Jiao Y, Chen S M, Song L, Zheng B, Zheng Y, Qiao S Z. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction[J]. ACS Energy Lett., 2018, 3(5): 1198-1204.

[11]

Wang C, Qi L M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting[J]. Angew. Chem. Int. Ed., 2020, 59(39): 17219-17224.

[12]

Luo M, Cai J Y, Zou J S, Jiang Z, Wang G M, Kang X W. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. J. Mater. Chem. A, 2021, 9(26): 14941-14947.

[13]

Muleja A A, Mbianda X Y, Krause R W, Pillay K. Synthesis, characterization and thermal decomposition behaviour of triphenylphosphine-linked multiwalled carbon nanotubes[J]. Carbon, 2012, 50(8): 2741-2751.

[14]

Song H Y, Ma C L, Wang L, Zhu Z G. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: Characterization and applications[J]. Nanoscale, 2020, 12(37): 19284-19292.

[15]

Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L L, Snyder J D, Li D G, Herron J A, Mavrikakis M, Chi M F, More K L, Li Y D, Markovic N M, Somorjai G A, Yang P D, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343.

[16]

Xie Y F, Cai J Y, Wu Y S, Zang Y P, Zheng X S, Ye J, Cui P X, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M, Qian Y T. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning[J]. Adv. Mater., 2019, 31(16): 1807780.

[17]

Zhang Z C, Liu G G, Cui X Y, Chen B, Zhu Y H, Gong Y, Saleem F, Xi S B, Du Y H, Borgna A, Lai Z C, Zhang Q H, Li B, Zong Y, Han Y, Gu L, Zhang H. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution[J]. Adv. Mater., 2018, 30(30): 1801741.

[18]

Fan J C, Qi K, Zhang L, Zhang H Y, Yu S S, Cui X Q. Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation[J]. ACS Appl. Mater. Inter., 2017, 9(21): 18008-18014.

[19]

Zhao Z P, Liu H T, Gao W P, Xue W, Liu Z Y, Huang J, Pan X Q, Huang Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(29): 9046-9050.

[20]

Cao Z M, Chen Q L, Zhang J W, Li H Q, Jiang Y Q, Shen S Y, Fu G, Lu B A, Xie Z X, Zheng L S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction[J]. Nat. Commun., 2017, 8: 15131.

[21]

Ding J B, Shao Q, Feng Y G, Huang X Q. Ruthenium-nickel sandwiched nanoplates for efficient water splitting electrocatalysis[J]. Nano Energy, 2018, 47: 1-7.

[22]

Li K, Li Y, Wang Y M, Ge J J, Liu C P, Xing W. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon[J]. Energy Environ. Sci., 2018, 11(5): 1232-1239.

[23]

Wu R, Xiao B, Gao Q, Zheng Y R, Zheng X S, Zhu J F, Gao M R, Yu S H. A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting[J]. Angew. Chem. Int. Ed., 2018, 57(47): 15445-15449.

[24]

Wan R D, Luo M, Wen J B, Liu S L, Kang X W, Tian Y. Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation[J]. J. Energy Chem., 2022, 69: 44-53.

[25]

Qin X P, Zhu S Q, Zhang L L, Sun S H, Shao M H. Theoretical studies of metal-N-C for oxygen reduction and hydrogen evolution reactions in acid and alkaline solutions[J]. J. Electrochem., 2021, 27(2): 185-194.

PDF (2451KB)

113

Accesses

0

Citation

Detail

Sections
Recommended

/