PEG-Water Electrolyte for High-Performance Zinc Iodine Dual-Ion Batteries

Xiao-Feng Qu , Yu-Ting Tang , Xin-Cheng He , Jia-Sheng Zhou , Zi-Heng Tang , Wen-Hua Feng , Jun Liu

Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (11) : 211026

PDF (25108KB)
Journal of Electrochemistry ›› 2023, Vol. 29 ›› Issue (11) :211026 DOI: 10.13208/j.electrochem.211026
ARTICLE
research-article

PEG-Water Electrolyte for High-Performance Zinc Iodine Dual-Ion Batteries

Author information +
History +
PDF (25108KB)

Abstract

Thanks to abundant resource and rapid redox reaction kinetics, iodine is regarded as promising positive materials in the batteries. However, the shuttling effect due to the high solubility of iodine in the electrolyte makes the performance of battery poor. In this paper, polyethylene glycol (PEG400) and potassium iodide were added into zinc-ion aqueous electrolyte. PEG400 could complex with iodine to reduce the dissolution of iodine, therefore alleviating the formation of soluble triiodide (I3-) from iodine and iodide ions. Furthermore, this electrolyte was used in the battery with double carbon cloths as the current collectors, double separators and zinc anode. At the current density of 1 mA·cm-2, the first discharge capacity reached 1.62 mAh·cm-2, and the coulombic efficiency was around 93%. Iodine involved in the electrochemical redox reaction is calculated to account for 47.52% of the total mass of iodine in this electrolyte. At high current density of 7 mA·cm-2, its coulombic efficiency still remained 98%, and the rate of capacity retention was 58.33% after 1,200 cycles.

Keywords

Zinc iodine battery / PEG400 / Dual-ion batteries / Complexation / High current density

Cite this article

Download citation ▾
Xiao-Feng Qu, Yu-Ting Tang, Xin-Cheng He, Jia-Sheng Zhou, Zi-Heng Tang, Wen-Hua Feng, Jun Liu. PEG-Water Electrolyte for High-Performance Zinc Iodine Dual-Ion Batteries. Journal of Electrochemistry, 2023, 29(11): 211026 DOI:10.13208/j.electrochem.211026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115-1118.

[2]

Ma J Z, Liu M M, He Y L, Zhang J T. Iodine redox chemistry in rechargeable batteries[J]. Angew. Chem. Int. Edit., 2021, 60(23): 12636-12647.

[3]

Zeng X M, Meng X J, Jiang W, Liu J, Ling M, Yan L J, Liang C D. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries[J]. ACS Sustain. Chem. Eng., 2020, 8(38): 14280-14285.

[4]

Sun H C, Han Y N, Bo S, Cai F S. Preparation and electrochemical performance of I2/carbon cloth for cathode material[J]. Chinese J. Power Sources, 2018, 42(11): 1649-1650+1716.

[5]

Zhang G M, Wang H F, Zhang S, Deng C. Using core-shell interlinked polymer@C-iodine hollow spheres to synergistically depress polyiodide shuttle and boost kinetics for iodine-based batteries[J]. J. Phys. Chem. A, 2018, 6(19): 9019-9031.

[6]

Wang F X, Liu Z C, Yang C Q, Zhong H X, Nam G, Zhang P P, Dong R H, Wu Y P, Cho J, Zhang J, Feng X L. Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability[J]. Adv. Mater., 2020, 32(4): 1905361.

[7]

Hong J J, Zhu L D, Chen C C, Tang L T, Jiang H, Jin B, Gallagher T C, Guo Q B, Fang C, Ji X L. A dual plating battery with the iodine/[ZnIx(OH2)4-x]2-x cathode[J]. Angew. Chem. Int. Edit., 2019, 58(44): 15910-15915.

[8]

Lan D Y, Qu X F, Tang Y T, Liu L Y, Liu J, Shi Z C. Acetate solutions with 3.9 V electrochemical stability window as an electrolyte for low-cost and high-performance aqueous sodium-ion batteries[J]. J. Electrochem., 2021, 28(1): 58-67.

[9]

Pavelec J, DiGuiseppi D, Zavlavsky B Y, Uversky V N, Schweitzer-Stenner R. Perturbation of water structure by water-polymer interactions probed by FTIR and polarized Raman spectroscopy[J]. J. Mol. Liq., 2019, 275: 463-473.

[10]

Calabrese V T, Khan A. Polyiodine and polyiodide species in an aqueous solution of iodine plus KI: Theoretical and experimental studies[J]. J. Phys. Chem. A, 2000, 104(6): 1287-1292.

[11]

Otsuka M, Mori H, Kikuchi H, Takano K. Density functional theory calculations of iodine cluster anions: Structures, chemical bonding nature, and vibrational spectra[J]. Comput. Theor. Chem., 2011, 973(1-3): 69-75.

[12]

Svensson P H, Kloo L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems[J]. Chem. Rev., 2003, 103(5): 1649-1684.

[13]

Xu P Q, Liu C Q. Determination of polyethylene glycol by iodine precipitation method[J]. Technol. of Water Treat., 1989, 5(15): 54-56.

[14]

Wei Y J, Liu C G, Mo L P. Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion[J]. Spectrosc. Spectral Anal., 2005, 25 (1): 86-88.

[15]

McDaniel J G, Yethiraj A. Grotthuss Transport of iodide in EMIM/I3- ionic crystal[J]. J. Phys. Chem. B, 2018, 122(1): 250-257.

[16]

Wang Y, Chen K H. Low-cost, lightweight electrodes based on carbon fibers as current collectors for aluminum-ion batteries[J]. J. Electroanal. Chem., 2019, 849: 113374.

[17]

Janesko B G. Topological analysis of the electron delocalization range[J]. J. Comput. Chem., 2016, 37(21): 1993-2005.

[18]

Mehmood A, Janesko B G. The electron delocalization range in stretched bonds[J]. Int. J. Quantum Chem., 2016, 116(23): 1783-1795.

[19]

Reuter L, Lüchow A. Real space electron delocalization, resonance, and aromaticity in chemistry[J]. Nat. Commun., 2021, 12(1): 4820.

[20]

Wu W L, Li C C, Wang Z Q, Shi H Y, Song Y, Liu X X, Sun X Q. Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries[J]. Chem. Eng. J., 2022, 428: 131283.

[21]

Pan H L, Li B, Mei D H, Nie Z M, Shao Y Y, Li G S, Li X H S, Han K S, Mueller K T, Sprenkle V, Liu J. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery[J]. ACS Energy Lett., 2017, 2(12): 2674-2680.

[22]

Bai C, Cai F S, Wang L C, Guo S Q, Liu X Z, Yuan Z H. A sustainable aqueous Zn-I2 battery[J]. Nano Res., 2018, 11(7): 3548-3554.

[23]

Deng C, Wang Z W, Wang S P, Yu J X, Martin D J, Nanjundan A K, Yamauchi Y. Double-layered modified separators as shuttle suppressing interlayers for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(1): 541-549.

[24]

Huang X S. Development and characterization of a bilayer separator for lithium ion batteries[J]. J. Power Sources, 2011, 196(19): 8125-8128.

PDF (25108KB)

357

Accesses

0

Citation

Detail

Sections
Recommended

/