Recent Advances in Electrochemical Kinetics Simulations and Their Applications in Pt-based Fuel Cells

Ji-Li Li , Ye-Fei Li , Zhi-Pan Liu

Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (2) : 2108511

PDF (1674KB)
Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (2) :2108511 DOI: 10.13208/j.electrochem.210851
Reviews
research-article

Recent Advances in Electrochemical Kinetics Simulations and Their Applications in Pt-based Fuel Cells

Author information +
History +
PDF (1674KB)

Abstract

Theoretical simulations of electrocatalysis are vital for understanding the mechanism of the electrochemical process at the atomic level. It can help to reveal the in-situ structures of electrode surfaces and establish the microscopic mechanism of electrocatalysis, thereby solving the problems such as electrode oxidation and corrosion. However, there are still many problems in the theoretical electrochemical simulations, including the solvation effects, the electric double layer, and the structural transformation of electrodes. Here we review recent advances of theoretical methods in electrochemical modeling, in particular, the double reference approach, the periodic continuum solvation model based on the modified Poisson-Boltzmann equation (CM-MPB), and the stochastic surface walking method based on the machine learning potential energy surface (SSW-NN). The case studies of oxygen reduction reaction by using CM-MPB and SSW-NN are presented.

Keywords

CM-MPB / machine learning / SSW / LASP

Cite this article

Download citation ▾
Ji-Li Li, Ye-Fei Li, Zhi-Pan Liu. Recent Advances in Electrochemical Kinetics Simulations and Their Applications in Pt-based Fuel Cells. Journal of Electrochemistry, 2022, 28(2): 2108511 DOI:10.13208/j.electrochem.210851

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J. Electrochemical energy storage for green grid[J]. Chem. Rev., 2011,111(5):3577-3613.

[2]

Jukk K, Alexeyeva N, Ritslaid P, Kozlova J, Sammelselg V, Tammeveski K. Electrochemical reduction of oxygen on heat-treated Pd nanoparticle/multi-walled carbon nano-tube composites in alkaline solution[J]. Electrocatalysis, 2013,4(1):42-48.

[3]

Gasteiger H A, Markovic N M. Just a dream-or future reality[J]. Science, 2009,324(5923):48-49.

[4]

Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synjournal of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007,316(5825):732-735.

[5]

Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces[J]. J. Am. Chem. Soc., 2006,128(27):8813-8819.

[6]

Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl. Catal. B, 2005,56(1):9-35.

[7]

Zhu J, Hu L, Zhao P, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020,120(2):851-918.

[8]

Lim B, Jiang M J, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009,324(5932):1302-1305.

[9]

Zhang J, Sasaki K, Sutter E, Adzic R R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007,315(5809):220-222.

[10]

Fang Y H, Liu Z P. Tafel kinetics of electrocatalytic reactions: from experiment to first-principles[J]. ACS Catal., 2014,4(12):4364-4376.

[11]

Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. J. Phys. Theor. Appl., 1910,9(1):457-468.

[12]

Chapman D L, LI. A contribution to the theory of electrocapillarity[J]. Philos. Mag., 1913,25(148):475-481.

[13]

Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Elektrochem. Angew. Phys. Chem., 1924,30(21-22):508-516.

[14]

Furuya N, Shibata M. Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions[J]. J. Electroanal. Chem., 1999,467(1):85-91.

[15]

Basdogan Y, Maldonado A M, Keith J A. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals[J]. Wires Comput. Mol. Sci., 2020,10(2):e1446.

[16]

Wang H F, Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model[J]. J. Phys. Chem. C, 2009,113(40):17502-17508.

[17]

Li Y F, Liu Z P, Liu L, Gao W. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings[J]. J. Am. Chem. Soc., 2010,132(37):13008-13015.

[18]

Fang Y H, Liu Z P. Electrochemical reactions at the electrode/solution interface: theory and applications to water electrolysis and oxygen reduction[J]. Sci. China Chem., 2010,53(3):543-552.

[19]

Shang C, Liu Z P. Stochastic surface walking method for structure prediction and pathway searching[J]. J. Chem. Theory Comput., 2013,9(3):1838-1845.

[20]

Shang C, Liu Z P. Constrained broyden minimization combined with the dimer method for locating transition state of complex reactions[J]. J. Chem. Theory Comput., 2010,6(4):1136-1144.

[21]

Artrith N, Urban A, Ceder G. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm[J]. J. Chem. Phys., 2018,148(24):241711.

[22]

Wales D J, Doye J P K. Global optimization by basin-hopping and the lowest energy structures of lennard-Jones clusters containing up to 110 atoms[J]. J. Phys. Chem. A, 1997,101(28):5111-5116.

[23]

Hart G L W, Mueller T, Toher C, Curtarolo S. Machine learning for alloys[J]. Nat. Rev. Mater., 2021,6(8):730-755.

[24]

Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kit-chin J R, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004,108(46):17886-17892.

[25]

Lozovoi A Y, Alavi A, Kohanoff J, Lynden-Bell R M. Ab initio simulation of charged slabs at constant chemical potential[J]. J. Chem. Phys., 2001,115(4):1661-1669.

[26]

Nörskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts[J]. Nat. Chem., 2009,1(1):37-46.

[27]

Filhol J S, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles[J]. Angew. Chem. Int. Ed., 2006,45(3):402-406.

[28]

Reiss H, Heller A. The absolute potential of the standard hydrogen electrode: a new estimate[J]. J. Phys. Chem, 1985,89(20):4207-4213.

[29]

Janik M J, Taylor C D, Neurock M. First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide[J]. Top. Catal., 2007,46(3):306-319.

[30]

Fattebert J L, Gygi F. Density functional theory for efficient ab initio molecular dynamics simulations in solution[J]. J. Comput. Chem., 2002,23(6):662-666.

[31]

Fattebert J L, Gygi F. Linear-scaling first-principles mol-ecular dynamics with plane-waves accuracy[J]. Phys. Rev. B, 2006,73(11):115124.

[32]

Fang Y H, Liu Z P. Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials[J]. J. Phys. Chem. C, 2009,113(22):9765-9772.

[33]

Fang Y H, Wei G F, Liu Z P. Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method[J]. Catal. Today, 2013,202:98-104.

[34]

Shang C, Zhang X J, Liu Z P. Stochastic surface walking method for crystal structure and phase transition pathway prediction[J]. Phys. Chem. Chem. Phys., 2014,16(33):17845-17856.

[35]

Wei G F, Liu Z P. Restructuring and hydrogen evolution on Pt nanoparticle[J]. Chem. Sci., 2015,6(2):1485-1490.

[36]

Li Y F, Liu Z P. Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings[J]. J. Am. Chem. Soc., 2011,133(39):15743-15752.

[37]

Zhang X J, Shang C, Liu Z P. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu[J]. J. Chem. Phys., 2017,147(15):152706.

[38]

Behler J. First principles neural network potentials for reactive simulations of large molecular and condensed systems[J]. Angew. Chem. Int. Ed., 2017,56(42):12828-12840.

[39]

Huang S D, Shang C, Zhang X J, Liu Z P. Material discovery by combining stochastic surface walking global optimization with a neural network[J]. Chem. Sci., 2017,8(9):6327-6337.

[40]

Huang S D, Shang C, Kang P L, Zhang X J, Liu Z P. LASP: Fast global potential energy surface exploration[J]. Wires. Comput. Mol. Sci., 2019,9(6):e1415.

[41]

Hansen H A, Rossmeisl J, Nörskov J K. Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT[J]. Phys. Chem. Chem. Phys., 2008,10(25):3722-3730.

[42]

Wei G F, Fang Y H, Liu Z P. First principles tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst[J]. J. Phys. Chem. C, 2012,116(23):12696-12705.

[43]

He Q G, Yang X F, Chen W, Mukerjee S, Koel B, Chen S W. Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals[J]. Phys. Chem. Chem. Phys., 2010,12(39):12544-12555.

[44]

Fang Y H, Liu Z P. Toward anticorrosion electrodes: site-selectivity and self-acceleration in the electrochemical corrosion of platinum[J]. J. Phys. Chem. C, 2010,114(9):4057-4062.

[45]

Wei G F, Liu Z P. Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt2M skin alloys[J]. Energy Environ. Sci., 2011,4(4):1268-1272.

[46]

Wei G F, Liu Z P. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design[J]. Phys. Chem. Chem. Phys., 2013,15(42):18555-18561.

[47]

Leontyev I N, Belenov S V, Guterman V E, Haghi-Ashtiani P, Shaganov A P, Dkhil B. Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial[J]. J. Phys. Chem. C, 2011,115(13):5429-5434.

[48]

Fang Y H, Song D D, Li H X, Liu Z P. Structure and activity of potential-dependent Pt(110) surface phases revealed from machine-learning atomic simulation[J]. J. Phys. Chem. C, 2021,125(20):10955-10963.

[49]

Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site avai-lability[J]. Science, 2007,315(5811):493-497.

PDF (1674KB)

99

Accesses

0

Citation

Detail

Sections
Recommended

/