Fouling Behavior of Direct Microfiltration for Wastewater Up-Concentration

Phuong-Thao Nguyen , Nhu-Nguyet Phan , Huu-Viet Nguyen , Thi-Kim-Chi Pham , Phuoc-Dan Nguyen , Xuan-Thanh Bui

Earth: Environmental Sustainability ›› 2025, Vol. 1 ›› Issue (2) : 202 -207.

PDF (1319KB)
Earth: Environmental Sustainability ›› 2025, Vol. 1 ›› Issue (2) :202 -207. DOI: 10.53941/eesus.2025.100016
Communication
research-article

Fouling Behavior of Direct Microfiltration for Wastewater Up-Concentration

Author information +
History +
PDF (1319KB)

Abstract

In the context of rapid urbanization and increasing demand for decentralized wastewater treatment, membrane-based technologies offer high effluent quality with a reduced footprint. Direct microfiltration (DMF) is a promising approach for simplified wastewater treatment. In this study, a lab-scale DMF system was operated for 65 h at an initial flux of 20 LMH to evaluate membrane fouling behavior with actual sewage. The results showed that the trans-membrane pressure (TMP) followed a typical three-stage fouling pattern, with a TMP jump between hours 10 and 15 at a fouling rate of 16 kPa/hour, sharply reducing permeate flux. Analysis of fouling resistance revealed that cake resistance (Rc) accounted for 94% of the total resistance, while membrane (Rm) and irreversible fouling (Rf) contributed only 2% and 4%, respectively, highlighting the dominant role of cake formation. These findings suggest that DMF systems are feasible for municipal sewage treatment at fluxes around 20 LMH. Finally, mitigation strategies such as backflushing, pretreatment and chemical cleaning to control early-stage fouling should be further investigated.

Keywords

direct microfiltration / sewage / membrane fouling / flux

Cite this article

Download citation ▾
Phuong-Thao Nguyen, Nhu-Nguyet Phan, Huu-Viet Nguyen, Thi-Kim-Chi Pham, Phuoc-Dan Nguyen, Xuan-Thanh Bui. Fouling Behavior of Direct Microfiltration for Wastewater Up-Concentration. Earth: Environmental Sustainability, 2025, 1(2): 202-207 DOI:10.53941/eesus.2025.100016

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cengiz A.I.; Guven H.; Ozgun H.; et al. Enhanced energy recovery in municipal wastewater treatment plants through co-digestion by anaerobic membrane bioreactors: Current status and future perspectives. Rev. Environ. Sci. Biotechnol. 2024, 23, 385-410. https://doi.org/10.1007/s11157-024-09691-6.

[2]

Sanchis-Perucho P.; Aguado D.; Ferrer J.; et al. Evaluating the feasibility of employing dynamic membranes for the direct filtration of municipal wastewater. Membranes 2022, 12, 1013. https://doi.org/10.3390/membranes12101013.

[3]

Ortega-Bravo J.C.; Pavez J.; Hidalgo V.; et al. Biogas production from concentrated municipal sewage by forward osmosis, micro and ultrafiltration. Sustainability 2022, 14, 2629. https://doi.org/10.3390/su14052629.

[4]

Zhao Y.; Li P.; Li R.; et al. Direct filtration for the treatment of the coagulated domestic sewage using flat-sheet ceramic membranes. Chemosphere 2019, 223, 383-390. https://doi.org/10.1016/J.CHEMOSPHERE.2019.02.055.

[5]

Khalid O.; Gidstedt S.; Lipnizki F.; et al. Direct Membrane Filtration (DMF) of municipal wastewater—A study on the prevention and remediation of fouling. J. Water Process Eng. 2024, 67, 106235. https://doi.org/10.1016/J.JWPE.2024.106235.

[6]

Russo F.; Bulzomì M.; Di Nicolò E.; et al. Enhanced Anti-Fouling Behavior and Performance of PES Membrane by UV Treatment. Processes 2021, 9, 246. https://doi.org/10.3390/pr9020246.

[7]

Russo F.; Marino T.; Galiano F.; et al. Tamisolve®® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes. Polymers 2021, 13, 2579. https://doi.org/10.3390/polym13152579.

[8]

Lateef S.K.; Soh B.Z.; Kimura K. Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter. Bioresour. Technol. 2013, 150, 149-155. https://doi.org/10.1016/J.BIORTECH.2013.09.111.

[9]

Sanchis-Perucho P.; Aguado D.; Ferrer J.; et al. A comprehensive review of the direct membrane filtration of municipal wastewater. Environ. Technol. Innov. 2024, 35, 103732. https://doi.org/10.1016/J.ETI.2024.103732.

[10]

Nguyen P.T.; Tran D.P.H.; Luu L.H.; et al. Long term effects of salinity on pollutants removal, microbial community and membrane fouling in an anoxic membrane bioreactor. Bioresour. Technol. 2025, 435, 132856. https://doi.org/10.1016/J.BIORTECH.2025.132856.

[11]

Fundamentals. In The MBR Book; Elsevier Science: Oxford, UK, 2011; pp. 55-207. https://doi.org/10.1016/B978-0-08-096682-3.10002-2.

[12]

Sandoval-García V.; Ruano M.V.; Alliet M.; et al. Modeling MBR fouling: A critical review analysis towards establishing a framework for good modeling practices. Water Res. 2025, 268, 122611. https://doi.org/10.1016/J.WATRES.2024.122611.

[13]

Subtil E.L.; Mohedano A.F.; Diaz E.; et al. Direct membrane filtration of municipal wastewater assisted by natural tannin-based coagulant: Insights into membrane fouling and methane production. J. Environ. Chem. Eng. 2025, 13, 117134. https://doi.org/10.1016/J.JECE.2025.117134.

AI Summary AI Mindmap
PDF (1319KB)

26

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/