Analysis of Differences in Electrochemical Performance Between Coin and Pouch Cells for Lithium-Ion Battery Applications

  • Yeonguk Son 1,2 ,
  • Hyungyeon Cha 3 ,
  • Taeyong Lee 3 ,
  • Yujin Kim 3 ,
  • Adam Boies 1 ,
  • Jaephil Cho , 3 ,
  • Michael De Volder , 1
Expand
  • 1. Department of Engineering, University of Cambridge, 17 Charles Babbage Road, CB3 0FS, Cambridge UK
  • 2. Department of Chemical Engineering, Changwon National University, Changwon Gyeongsangnam-do 51140, Korea
  • 3. Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
jpcho@unist.ac.kr
mfld2@cam.ac.uk

Received date: 30 Nov 2022

Revised date: 22 Feb 2023

Copyright

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

Small coin cell batteries are predominantly used for testing lithium-ion batteries (LIBs) in academia because they require small amounts of material and are easy to assemble. However, insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry. In this article, we compare coin cells and pouch cells of different size with exactly the same electrode materials, electrolyte, and electrochemical conditions. We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic Intermittent Titration Technique (GITT). Using full cell NCA-graphite LIBs, we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode. We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.

Cite this article

Yeonguk Son , Hyungyeon Cha , Taeyong Lee , Yujin Kim , Adam Boies , Jaephil Cho , Michael De Volder . Analysis of Differences in Electrochemical Performance Between Coin and Pouch Cells for Lithium-Ion Battery Applications[J]. Energy & Environmental Materials, 2024 , 7(3) : 12615 . DOI: 10.1002/eem2.12615

1
J. M. Tarascon , M. Armand , Nature 2001, 414, 359.

2
Z. P. Cano , D. Banham , S. Ye , A. Hintennach , J. Lu , M. Fowler , Z. Chen , Nat. Energy 2018, 3, 279.

3
X. Zeng , M. Li , D. Abd El-Hady , W. Alshitari , A. S. Al-Bogami , J. Lu , K. Amine , Adv. Energy Mater. 2019, 9, 1900161.

4
R. Schmuch , R. Wagner , G. Hörpel , T. Placke , M. Winter , Nat. Energy 2018, 3, 267.

5
S. Chen , F. Dai , M. Cai , ACS Energy lett. 2020, 5, 3140.

6
S. Chen , C. Niu , H. Lee , Q. Li , L. Yu , W. Xu , J.-G. Zhang , E. J. Dufek , M. S. Whittingham , S. Meng , J. Xiao , J. Liu , Joule 2019, 3, 1094.

7
Y. Son , H. Cha , C. Jo , A. S. Groombridge , T. Lee , A. Boies , J. Cho , M. De Volder , Mater. Today Energy 2021, 21, 100838.

8
M. Hagen , D. Hanselmann , K. Ahlbrecht , R. Maça , D. Gerber , J. Tübke , Adv. Energy Mater. 2015, 5, 1401986.

9
S. Dörfler , H. Althues , P. Härtel , T. Abendroth , B. Schumm , S. Kaskel , Joule 2020, 4, 539.

10
X.-B. Cheng , C. Yan , J.-Q. Huang , P. Li , L. Zhu , L. Zhao , Y. Zhang , W. Zhu , S.-T. Yang , Q. Zhang , Energy Stor. Mater. 2017, 6, 18.

11
Y. Cao , M. Li , J. Lu , J. Liu , K. Amine , Nat. Nanotechnol. 2019, 14, 200.

12
Z. Lin , T. Liu , X. Ai , C. Liang , Nat. Commun. 2018, 9, 5262.

13
V. Murray , D. S. Hall , J. R. Dahn , J. Electrochem. Soc. 2019, 166, A329.

14
J. Hu , B. Wu , S. Chae , J. Lochala , Y. Bi , J. Xiao , Joule 2021, 5, 1011.

15
W. Weppner , R. A. Huggins , J. Electrochem. Soc. 1977, 124, 1569.

16
Y. Son , T. Lee , B. Wen , J. Ma , C. Jo , Y.-G. Cho , A. Boies , J. Cho , M. De Volder , Energ. Environ. Sci. 2020, 13, 3723.

17
K. Jong Hoon , L. Seong Jun , L. Jae Moon , C. Bo Hyung , Presented at 2007 7th Internatonal Conference on Power Electronics, Oct. 2007.

18
J. Billaud , F. Bouville , T. Magrini , C. Villevieille , A. R. Studart , Nat. Energy 2016, 1, 16097.

19
M. Ebner , D.-W. Chung , R. E. García , V. Wood , Adv. Energy Mater. 2014, 4, 1301278.

20
C. Uhlmann , J. Illig , M. Ender , R. Schuster , E. Ivers-Tiffée , J. Power Sources 2015, 279, 428.

21
F. Ringbeck , C. Rahe , G. Fuchs , D. U. Sauer , J. Electrochem. Soc. 2020, 167, 90536.

22
W. M. Dose , C. Xu , C. P. Grey , M. De Volder , Cell Rep. Phys. Sci. 2020, 1, 100253.

23
S. J. An , J. Li , C. Daniel , H. M. Meyer , S. E. Trask , B. J. Polzin , D. L. Wood III , ACS Appl. Mater. Interfaces 2017, 9, 18799.

24
S. J. An , J. Li , D. Mohanty , C. Daniel , B. J. Polzin , J. R. Croy , S. E. Trask , D. L. Wood III , J. Electrochem. Soc. 2017, 164, A1195.

Options
Outlines

/