Analysis of Differences in Electrochemical Performance Between Coin and Pouch Cells for Lithium-Ion Battery Applications

Yeonguk Son, Hyungyeon Cha, Taeyong Lee, Yujin Kim, Adam Boies, Jaephil Cho, Michael De Volder

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12615. DOI: 10.1002/eem2.12615
RESEARCH ARTICLE

Analysis of Differences in Electrochemical Performance Between Coin and Pouch Cells for Lithium-Ion Battery Applications

Author information +
History +

Abstract

Small coin cell batteries are predominantly used for testing lithium-ion batteries (LIBs) in academia because they require small amounts of material and are easy to assemble. However, insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry. In this article, we compare coin cells and pouch cells of different size with exactly the same electrode materials, electrolyte, and electrochemical conditions. We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic Intermittent Titration Technique (GITT). Using full cell NCA-graphite LIBs, we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode. We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.

Keywords

coin cell / full cell / lithium-ion batteries / pouch cell

Cite this article

Download citation ▾
Yeonguk Son, Hyungyeon Cha, Taeyong Lee, Yujin Kim, Adam Boies, Jaephil Cho, Michael De Volder. Analysis of Differences in Electrochemical Performance Between Coin and Pouch Cells for Lithium-Ion Battery Applications. Energy & Environmental Materials, 2024, 7(3): 12615 https://doi.org/10.1002/eem2.12615

References

[1]
J. M. Tarascon , M. Armand , Nature 2001, 414, 359.
[2]
Z. P. Cano , D. Banham , S. Ye , A. Hintennach , J. Lu , M. Fowler , Z. Chen , Nat. Energy 2018, 3, 279.
[3]
X. Zeng , M. Li , D. Abd El-Hady , W. Alshitari , A. S. Al-Bogami , J. Lu , K. Amine , Adv. Energy Mater. 2019, 9, 1900161.
[4]
R. Schmuch , R. Wagner , G. Hörpel , T. Placke , M. Winter , Nat. Energy 2018, 3, 267.
[5]
S. Chen , F. Dai , M. Cai , ACS Energy lett. 2020, 5, 3140.
[6]
S. Chen , C. Niu , H. Lee , Q. Li , L. Yu , W. Xu , J.-G. Zhang , E. J. Dufek , M. S. Whittingham , S. Meng , J. Xiao , J. Liu , Joule 2019, 3, 1094.
[7]
Y. Son , H. Cha , C. Jo , A. S. Groombridge , T. Lee , A. Boies , J. Cho , M. De Volder , Mater. Today Energy 2021, 21, 100838.
[8]
M. Hagen , D. Hanselmann , K. Ahlbrecht , R. Maça , D. Gerber , J. Tübke , Adv. Energy Mater. 2015, 5, 1401986.
[9]
S. Dörfler , H. Althues , P. Härtel , T. Abendroth , B. Schumm , S. Kaskel , Joule 2020, 4, 539.
[10]
X.-B. Cheng , C. Yan , J.-Q. Huang , P. Li , L. Zhu , L. Zhao , Y. Zhang , W. Zhu , S.-T. Yang , Q. Zhang , Energy Stor. Mater. 2017, 6, 18.
[11]
Y. Cao , M. Li , J. Lu , J. Liu , K. Amine , Nat. Nanotechnol. 2019, 14, 200.
[12]
Z. Lin , T. Liu , X. Ai , C. Liang , Nat. Commun. 2018, 9, 5262.
[13]
V. Murray , D. S. Hall , J. R. Dahn , J. Electrochem. Soc. 2019, 166, A329.
[14]
J. Hu , B. Wu , S. Chae , J. Lochala , Y. Bi , J. Xiao , Joule 2021, 5, 1011.
[15]
W. Weppner , R. A. Huggins , J. Electrochem. Soc. 1977, 124, 1569.
[16]
Y. Son , T. Lee , B. Wen , J. Ma , C. Jo , Y.-G. Cho , A. Boies , J. Cho , M. De Volder , Energ. Environ. Sci. 2020, 13, 3723.
[17]
K. Jong Hoon , L. Seong Jun , L. Jae Moon , C. Bo Hyung , Presented at 2007 7th Internatonal Conference on Power Electronics, Oct. 2007.
[18]
J. Billaud , F. Bouville , T. Magrini , C. Villevieille , A. R. Studart , Nat. Energy 2016, 1, 16097.
[19]
M. Ebner , D.-W. Chung , R. E. García , V. Wood , Adv. Energy Mater. 2014, 4, 1301278.
[20]
C. Uhlmann , J. Illig , M. Ender , R. Schuster , E. Ivers-Tiffée , J. Power Sources 2015, 279, 428.
[21]
F. Ringbeck , C. Rahe , G. Fuchs , D. U. Sauer , J. Electrochem. Soc. 2020, 167, 90536.
[22]
W. M. Dose , C. Xu , C. P. Grey , M. De Volder , Cell Rep. Phys. Sci. 2020, 1, 100253.
[23]
S. J. An , J. Li , C. Daniel , H. M. Meyer , S. E. Trask , B. J. Polzin , D. L. Wood III , ACS Appl. Mater. Interfaces 2017, 9, 18799.
[24]
S. J. An , J. Li , D. Mohanty , C. Daniel , B. J. Polzin , J. R. Croy , S. E. Trask , D. L. Wood III , J. Electrochem. Soc. 2017, 164, A1195.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/