Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally

  • Sajid Rauf 1 ,
  • Muhammad Bilal Hanif 2 ,
  • Faiz Wali 3 ,
  • Zuhra Tayyab 1 ,
  • Bin Zhu , 4 ,
  • Naveed Mushtaq 4 ,
  • Yatao Yang , 1 ,
  • Kashif Khan 5 ,
  • Peter D. Lund 4,6 ,
  • Martin Motola 2 ,
  • Wei Xu , 1
Expand
  • 1. College of Electronic and Information Engineering and State Key Laboratory of Radio frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518000, China
  • 2. Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
  • 3. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 4. School of Energy and Environment, Southeast University, No.2 Si Pai Lou, Nanjing 210096, China
  • 5. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 6. New Energy Technologies Group, Department of Applied Physics, Aalto University School of Science, P. O. Box 15100, FI-00076, Aalto, Espoo Finland
zhu-bin@seu.edu.cn
yatao86@163.com
weixu@szu.edu.cn

Received date: 31 Dec 2022

Revised date: 06 Feb 2023

Copyright

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance. In this regard, the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device. Semiconductor (n-type; SnO2) plays a key role by introducing into p-type SrFe0.2Ti0.8O3-δ (SFT) semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity. Therefore, two different composites of SFT and SnO2 are constructed by gluing p- and n-type SFT-SnO2, where the optimal composition of SFT-SnO2 (6:4) heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm−1 with power-output of 1004 mW cm−2 and high OCV 1.12 V at a low operational temperature of 500 ℃. The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO2 heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device. Moreover, the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO2 heterostructure electrolyte and ruled-out short-circuiting issue. Further, the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO2. This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.

Cite this article

Sajid Rauf , Muhammad Bilal Hanif , Faiz Wali , Zuhra Tayyab , Bin Zhu , Naveed Mushtaq , Yatao Yang , Kashif Khan , Peter D. Lund , Martin Motola , Wei Xu . Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally[J]. Energy & Environmental Materials, 2024 , 7(3) : 12606 . DOI: 10.1002/eem2.12606

1
R. M. Ormerod , Chem. Soc. Rev. 2003, 32, 17.

2
S. C. Singhal , Solid State Ionics 2002, 152, 405.

3
B. Zhu , S. Yun , P. D. Lund , Int. J. Energy Res. 2018, 42, 3413.

4
L. Fan , B. Zhu , P.-C. Su , C. He , Nano Energy 2018, 45, 148.

5
B. Zhu , L. Fan , N. Mushtaq , R. Raza , M. Sajid , Y. Wu , W. Lin , J.-S. Kim , P. D. Lund , S. Yun , Electrochem. Energ. Rev. 2021, 4, 757.

6
M. B. Hanif , M. Motola , S. Rauf , C.-J. Li , C.-X. Li , Chem. Eng. J. 2022, 428, 132603.

7
M. B. Hanif , S. Rauf , M. Motola , Z. U. D. Babar , C.-J. Li , C.-X. Li , Mater. Res. Bull. 2022, 146, 111612.

8
M. B. Hanif , S. Rauf , S. Qayyum , M. Šihor , M. Motola , Sustain. Energy Fuels 2022, 6, 3465.

9
O. Yamamoto , Y. Arati , Y. Takeda , N. Imanishi , Y. Mizutani , M. Kawai , Y. Nakamura , Solid State Ionics 1995, 79, 137.

10
K. Khor , L.-G. Yu , S. Chan , X. Chen , J. Eur. Ceram. Soc. 2003, 23, 1855.

11
J. B. Goodenough , Nature 2000, 404, 821.

12
J. Garcia-Barriocanal , A. Rivera-Calzada , M. Varela , Z. Sefrioui , E. Iborra , C. Leon , S. J. Pennycook , J. Santamaria , Science 2008, 321, 676.

13
H. Huang , M. Nakamura , P. Su , R. Fasching , Y. Saito , F. B. Prinz , J. Electrochem. Soc. 2006, 154, B20.

14
D. Pergolesi , E. Fabbri , A. D’Epifanio , E. Di Bartolomeo , A. Tebano , S. Sanna , S. Licoccia , G. Balestrino , E. Traversa , Nat. Mater. 2010, 9, 846.

15
E. D. Wachsman , K. T. Lee , Science 2011, 334, 935.

16
B. Timurkutluk , C. Timurkutluk , M. D. Mat , Y. Kaplan , Renew. Sust. Energ. Rev. 2016, 56, 1101.

17
Y. Xing , Y. Wu , L. Li , Q. Shi , J. Shi , S. Yun , M. Akbar , B. Wang , J.-S. Kim , B. Zhu , ACS Energy Lett. 2019, 4, 2601.

18
S. Rauf , B. Zhu , M. Shah , Z. Tayyab , S. Attique , N. Ali , N. Mushtaq , M. Asghar , P. Lund , C. Yang , Mater. Today Energy 2021, 20, 100661.

19
W. Yang , T. Hong , S. Li , Z. Ma , C. Sun , C. Xia , L. Chen , ACS Appl. Mater. Interfaces 2013, 5, 1143.

20
N. Jaiswal , K. Tanwar , R. Suman , D. Kumar , S. Upadhyay , O. Parkash , J. Alloys Compd. 2019, 781, 984.

21
Y. Cai , Y. Chen , M. Akbar , B. Jin , Z. Tu , N. Mushtaq , B. Wang , X. Qu , C. Xia , Y. Huang , Nanomicro Lett. 2021,

DOI

22
S. Rauf , B. Zhu , M. Yousaf Shah , Z. Tayyab , S. Attique , N. Ali , N. Mushtaq , B. Wang , C. Yang , M. I. Asghar , ACS Appl. Mater. Interfaces 2020, 12, 35071.

23
S. Rauf , M. B. Hanif , N. Mushtaq , Z. Tayyab , N. Ali , M. Y. Shah , M. Motola , A. Saleem , M. I. Asghar , R. Iqbal , ACS Appl. Mater. Interfaces 2022, 14, 43067.

24
K. Liu , K. S. Ganesh , J. Nie , Z. He , C. Xia , W. Dong , X. Wang , H. Wang , B. Wang , ACS Sustain. Chem. Eng. 2020, 8, 10357.

25
C. Xia , Y. Mi , B. Wang , B. Lin , G. Chen , B. Zhu , Nat. Commun. 2019,

DOI

26
B. Zhu , P. D. Lund , R. Raza , Y. Ma , L. Fan , M. Afzal , J. Patakangas , Y. He , Y. Zhao , W. Tan , Adv. Energy Mater. 2015, 5, 1401895.

27
D. Mohanta , K. Barman , S. Jasimuddin , M. Ahmaruzzaman , J. Colloid Interface Sci. 2017, 505, 756.

28
S. Das , V. Jayaraman , Prog. Mater. Sci. 2014, 66, 112.

29
K. S. Ganesh , L. Fan , B. Wang , P. Jeevan Kumar , B. Zhu , ACS Appl. Energy Mater. 2022, 5, 12513.

30
N. Akbar , S. Paydar , M. Afzal , M. Akbar , M. A. K. Y. Shah , W. Ge , B. Zhu , Int. J. Hydrog. Energy 2022, 47, 5531.

31
N. Mushtaq , C. Xia , W. Dong , G. Abbas , R. Raza , A. Ali , S. Rauf , B. Wang , J.-S. Kim , B. Zhu , Ceram. Int. 2018, 44, 10266.

32
M. Y. Shah , Y. Lu , N. Mushtaq , S. Rauf , M. Yousaf , M. I. Asghar , P. D. Lund , B. Zhu , Renew. Energy 2022, 196, 901.

33
M. A. K. Y. Shah , N. Mushtaq , S. Rauf , C. Xia , B. Zhu , Int. J. Hydrog. Energy 2019, 44, 30319.

34
N. Mushtaq , C. Xia , W. Dong , B. Wang , R. Raza , A. Ali , M. Afzal , B. Zhu , ACS Appl. Mater. Interfaces 2019, 11, 38737.

35
J. Kaur , J. Shah , R. Kotnala , K. C. Verma , Ceram. Int. 2012, 38, 5563.

36
N. Mushtaq , Y. Lu , C. Xia , W. Dong , B. Wang , M. Y. Shah , S. Rauf , M. Akbar , E. Hu , R. Raza , Appl. Catal. B Environ. 2021, 298, 120503.

37
M. J. Jørgensen , S. Primdahl , M. Mogensen , Electrochim. Acta 1999, 44, 4195.

38
Y. Lu , M. Akbar , J. Li , L. Ma , B. Wang , C. Xia , J. Alloys Compd. 2022, 890, 161765.

39
S. Lee , W. Zhang , F. Khatkhatay , H. Wang , Q. Jia , J. L. MacManus-Driscoll , Nano Lett. 2015, 15, 7362.

40
B. Fan , J. Yan , X. Yan , Solid State Sci. 2011, 13, 1835.

41
Y. Wu , J. Zhang , L. Li , J. Wei , J. Li , X. Yang , C. Yan , C. Zhou , B. Zhu , ACS Appl. Energy Mater. 2018, 1, 580.

42
M. Liu , D. Ding , Y. Bai , T. He , M. Liu , J. Electrochem. Soc. 2012, 159, B661.

43
E. Fabbri , A. D’Epifanio , E. Di Bartolomeo , S. Licoccia , E. Traversa , Solid State Ionics 2008, 179, 558.

44
S. Chan , X. Chen , K. Khor , Solid State Ionics 2003, 158, 29.

45
J. S. Ahn , D. Pergolesi , M. A. Camaratta , H. Yoon , B. W. Lee , K. T. Lee , D. W. Jung , E. Traversa , E. D. Wachsman , Electrochem. Commun. 2009, 11, 1504.

46
Z. Qiao , C. Xia , Y. Cai , M. Afzal , H. Wang , J. Qiao , B. Zhu , J. Power Sources 2018, 392, 33.

47
S.-F. Wang , Y.-L. Liao , Y.-F. Hsu , P. Jasinski , J. Power Sources 2022, 546, 231995.

48
S. Chan , K. Khor , Z. Xia , J. Power Sources 2001, 93, 130.

49
N. Mahato , A. Banerjee , A. Gupta , S. Omar , K. Balani , Prog. Mater. Sci. 2015, 72, 141.

50
K. Prabhakaran , M. Beigh , J. Lakra , N. Gokhale , S. Sharma , J. Mater. Process. Technol. 2007, 189, 178.

51
Y. P. Fu , S. B. Wen , C. H. Lu , J. Am. Ceram. Soc. 2008, 91, 127.

52
R. Haugsrud , T. Norby , Nat. Mater. 2006, 5, 193.

53
A. Nenning , A. K. Opitz , C. Rameshan , R. Rameshan , R. Blume , M. Hävecker , A. Knop-Gericke , G. N. Rupprechter , B. Klötzer , J. R. Fleig , J. Phys. Chem. C 2016, 120, 1461.

54
T. Yao , C. Guan , J. Zhang , X. Zhang , X. Huang , J. Wu , Chem. Asian J. 2017, 12, 1400.

55
S. Saher , M. Meffert , H. Störmer , D. Gerthsen , H. J. Bouwmeester , J. Mater. Chem. A 2017, 5, 4982.

56
S. Rauf , M. Y. Shah , B. Zhu , Z. Tayyab , N. Ali , S. Attique , C. Xia , R. Khatoon , C. Yang , M. I. Asghar , ACS Appl. Energy Mater. 2021, 4, 194.

57
T. L. Barr , Modern ESCA: The principles and practice of X-ray photoelectron spectroscopy, CRC press, Boca Raton 2020.

58
T. Gao , A. Kumar , Z. Shang , X. Duan , H. Wang , S. Wang , S. Ji , D. Yan , L. Luo , W. Liu , Chin. Chem. Lett. 2019, 30, 2274.

59
K. S. Ganesh , B. Wang , J.-S. Kim , B. Zhu , J. Phys. Chem. C 2019, 123, 8569.

60
B. Zhu , B. Wang , Y. Wang , R. Raza , W. Tan , J.-S. Kim , P. A. Van Aken , P. Lund , Nano Energy 2017, 37, 195.

61
B. Wang , Y. Wang , L. Fan , Y. Cai , C. Xia , Y. Liu , R. Raza , P. A. van Aken , H. Wang , J. Mater. Chem. A 2016, 4, 15426.

62
K. Novoselov , O. A. Mishchenko , O. A. Carvalho , A. Castro Neto , Science 2016, 353, aac9439.

63
L. Li , Carbon Trends 2022, 7, 100153.

64
Z. Wang , Q. Chen , J. Wang , J. Phys. Chem. C 2015, 119, 4752.

65
S. Na-Phattalung , M. F. Smith , K. Kim , M.-H. Du , S.-H. Wei , S. Zhang , S. Limpijumnong , Phys. Rev. B 2006, 73, 125205.

66
F. Xue , J. Huang , T. Li , Z. Wang , X. Zhou , L. Wei , B. Gao , Y. Zhai , Q. Li , Q. Xu , J. Magn. Magn. Mater. 2018, 446, 118.

67
T. Wang , B. Daiber , J. M. Frost , S. A. Mann , E. C. Garnett , A. Walsh , B. Ehrler , Energy Environ. Sci. 2017, 10, 509.

68
X. Cai , P. Zhang , S.-H. Wei , J. Semicond. 2019, 40, 92101.

69
M. Akazawa , B. Gao , T. Hashizume , M. Hiroki , S. Yamahata , N. Shigekawa , J. Appl. Phys. 2011, 109, 13703.

70
E. Hu , Z. Jiang , L. Fan , M. Singh , F. Wang , R. Raza , M. Sajid , J. Wang , J.-S. Kim , B. Zhu , Iscience 2021, 24, 102191.

71
J. Li , Y. Lu , D. Li , F. Qi , L. Yu , C. Xia , Int. J. Hydrog. Energy 2021, 46, 9790.

72
Y. Guo , H. Qi , X. Zhang , D. Cui , Z. Zhao , B. Tu , M. Cheng , Nano Lett. 2021, 21, 8764.

73
J. Hafner , J. Comput. Chem. 2008, 29, 2044.

74
P. E. Blöchl , Phys. Rev. B 1994, 50, 17953.

75
J. P. Perdew , K. Burke , M. Ernzerhof , Phys. Rev. Lett. 1996, 77, 3865.

76
S. Grimme , J. Comput. Chem. 2006, 27, 1787.

77
H. J. Monkhorst , J. D. Pack , Phys. Rev. B 1976, 13, 5188.

78
V. Wang , N. Xu , J.-C. Liu , Comput. Phys. Commun. 2021, 267, 108033.

Options
Outlines

/