Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally
Sajid Rauf , Muhammad Bilal Hanif , Faiz Wali , Zuhra Tayyab , Bin Zhu , Naveed Mushtaq , Yatao Yang , Kashif Khan , Peter D. Lund , Martin Motola , Wei Xu
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12606
Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally
Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance. In this regard, the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device. Semiconductor (n-type; SnO2) plays a key role by introducing into p-type SrFe0.2Ti0.8O3-δ (SFT) semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity. Therefore, two different composites of SFT and SnO2 are constructed by gluing p- and n-type SFT-SnO2, where the optimal composition of SFT-SnO2 (6:4) heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm−1 with power-output of 1004 mW cm−2 and high OCV 1.12 V at a low operational temperature of 500 ℃. The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO2 heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device. Moreover, the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO2 heterostructure electrolyte and ruled-out short-circuiting issue. Further, the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO2. This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.
high ionic conductivity / interfacial conduction / modulated energy band structure / p-n heterojunction / semiconductors
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |