Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally
Sajid Rauf, Muhammad Bilal Hanif, Faiz Wali, Zuhra Tayyab, Bin Zhu, Naveed Mushtaq, Yatao Yang, Kashif Khan, Peter D. Lund, Martin Motola, Wei Xu
Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally
Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance. In this regard, the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device. Semiconductor (n-type; SnO2) plays a key role by introducing into p-type SrFe0.2Ti0.8O3-δ (SFT) semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity. Therefore, two different composites of SFT and SnO2 are constructed by gluing p- and n-type SFT-SnO2, where the optimal composition of SFT-SnO2 (6:4) heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm−1 with power-output of 1004 mW cm−2 and high OCV 1.12 V at a low operational temperature of 500 ℃. The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO2 heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device. Moreover, the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO2 heterostructure electrolyte and ruled-out short-circuiting issue. Further, the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO2. This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.
high ionic conductivity / interfacial conduction / modulated energy band structure / p-n heterojunction / semiconductors
[1] |
R. M. Ormerod , Chem. Soc. Rev. 2003, 32, 17.
|
[2] |
S. C. Singhal , Solid State Ionics 2002, 152, 405.
|
[3] |
B. Zhu , S. Yun , P. D. Lund , Int. J. Energy Res. 2018, 42, 3413.
|
[4] |
L. Fan , B. Zhu , P.-C. Su , C. He , Nano Energy 2018, 45, 148.
|
[5] |
B. Zhu , L. Fan , N. Mushtaq , R. Raza , M. Sajid , Y. Wu , W. Lin , J.-S. Kim , P. D. Lund , S. Yun , Electrochem. Energ. Rev. 2021, 4, 757.
|
[6] |
M. B. Hanif , M. Motola , S. Rauf , C.-J. Li , C.-X. Li , Chem. Eng. J. 2022, 428, 132603.
|
[7] |
M. B. Hanif , S. Rauf , M. Motola , Z. U. D. Babar , C.-J. Li , C.-X. Li , Mater. Res. Bull. 2022, 146, 111612.
|
[8] |
M. B. Hanif , S. Rauf , S. Qayyum , M. Šihor , M. Motola , Sustain. Energy Fuels 2022, 6, 3465.
|
[9] |
O. Yamamoto , Y. Arati , Y. Takeda , N. Imanishi , Y. Mizutani , M. Kawai , Y. Nakamura , Solid State Ionics 1995, 79, 137.
|
[10] |
K. Khor , L.-G. Yu , S. Chan , X. Chen , J. Eur. Ceram. Soc. 2003, 23, 1855.
|
[11] |
J. B. Goodenough , Nature 2000, 404, 821.
|
[12] |
J. Garcia-Barriocanal , A. Rivera-Calzada , M. Varela , Z. Sefrioui , E. Iborra , C. Leon , S. J. Pennycook , J. Santamaria , Science 2008, 321, 676.
|
[13] |
H. Huang , M. Nakamura , P. Su , R. Fasching , Y. Saito , F. B. Prinz , J. Electrochem. Soc. 2006, 154, B20.
|
[14] |
D. Pergolesi , E. Fabbri , A. D’Epifanio , E. Di Bartolomeo , A. Tebano , S. Sanna , S. Licoccia , G. Balestrino , E. Traversa , Nat. Mater. 2010, 9, 846.
|
[15] |
E. D. Wachsman , K. T. Lee , Science 2011, 334, 935.
|
[16] |
B. Timurkutluk , C. Timurkutluk , M. D. Mat , Y. Kaplan , Renew. Sust. Energ. Rev. 2016, 56, 1101.
|
[17] |
Y. Xing , Y. Wu , L. Li , Q. Shi , J. Shi , S. Yun , M. Akbar , B. Wang , J.-S. Kim , B. Zhu , ACS Energy Lett. 2019, 4, 2601.
|
[18] |
S. Rauf , B. Zhu , M. Shah , Z. Tayyab , S. Attique , N. Ali , N. Mushtaq , M. Asghar , P. Lund , C. Yang , Mater. Today Energy 2021, 20, 100661.
|
[19] |
W. Yang , T. Hong , S. Li , Z. Ma , C. Sun , C. Xia , L. Chen , ACS Appl. Mater. Interfaces 2013, 5, 1143.
|
[20] |
N. Jaiswal , K. Tanwar , R. Suman , D. Kumar , S. Upadhyay , O. Parkash , J. Alloys Compd. 2019, 781, 984.
|
[21] |
Y. Cai , Y. Chen , M. Akbar , B. Jin , Z. Tu , N. Mushtaq , B. Wang , X. Qu , C. Xia , Y. Huang , Nanomicro Lett. 2021,
CrossRef
Google scholar
|
[22] |
S. Rauf , B. Zhu , M. Yousaf Shah , Z. Tayyab , S. Attique , N. Ali , N. Mushtaq , B. Wang , C. Yang , M. I. Asghar , ACS Appl. Mater. Interfaces 2020, 12, 35071.
|
[23] |
S. Rauf , M. B. Hanif , N. Mushtaq , Z. Tayyab , N. Ali , M. Y. Shah , M. Motola , A. Saleem , M. I. Asghar , R. Iqbal , ACS Appl. Mater. Interfaces 2022, 14, 43067.
|
[24] |
K. Liu , K. S. Ganesh , J. Nie , Z. He , C. Xia , W. Dong , X. Wang , H. Wang , B. Wang , ACS Sustain. Chem. Eng. 2020, 8, 10357.
|
[25] |
C. Xia , Y. Mi , B. Wang , B. Lin , G. Chen , B. Zhu , Nat. Commun. 2019,
CrossRef
Google scholar
|
[26] |
B. Zhu , P. D. Lund , R. Raza , Y. Ma , L. Fan , M. Afzal , J. Patakangas , Y. He , Y. Zhao , W. Tan , Adv. Energy Mater. 2015, 5, 1401895.
|
[27] |
D. Mohanta , K. Barman , S. Jasimuddin , M. Ahmaruzzaman , J. Colloid Interface Sci. 2017, 505, 756.
|
[28] |
S. Das , V. Jayaraman , Prog. Mater. Sci. 2014, 66, 112.
|
[29] |
K. S. Ganesh , L. Fan , B. Wang , P. Jeevan Kumar , B. Zhu , ACS Appl. Energy Mater. 2022, 5, 12513.
|
[30] |
N. Akbar , S. Paydar , M. Afzal , M. Akbar , M. A. K. Y. Shah , W. Ge , B. Zhu , Int. J. Hydrog. Energy 2022, 47, 5531.
|
[31] |
N. Mushtaq , C. Xia , W. Dong , G. Abbas , R. Raza , A. Ali , S. Rauf , B. Wang , J.-S. Kim , B. Zhu , Ceram. Int. 2018, 44, 10266.
|
[32] |
M. Y. Shah , Y. Lu , N. Mushtaq , S. Rauf , M. Yousaf , M. I. Asghar , P. D. Lund , B. Zhu , Renew. Energy 2022, 196, 901.
|
[33] |
M. A. K. Y. Shah , N. Mushtaq , S. Rauf , C. Xia , B. Zhu , Int. J. Hydrog. Energy 2019, 44, 30319.
|
[34] |
N. Mushtaq , C. Xia , W. Dong , B. Wang , R. Raza , A. Ali , M. Afzal , B. Zhu , ACS Appl. Mater. Interfaces 2019, 11, 38737.
|
[35] |
J. Kaur , J. Shah , R. Kotnala , K. C. Verma , Ceram. Int. 2012, 38, 5563.
|
[36] |
N. Mushtaq , Y. Lu , C. Xia , W. Dong , B. Wang , M. Y. Shah , S. Rauf , M. Akbar , E. Hu , R. Raza , Appl. Catal. B Environ. 2021, 298, 120503.
|
[37] |
M. J. Jørgensen , S. Primdahl , M. Mogensen , Electrochim. Acta 1999, 44, 4195.
|
[38] |
Y. Lu , M. Akbar , J. Li , L. Ma , B. Wang , C. Xia , J. Alloys Compd. 2022, 890, 161765.
|
[39] |
S. Lee , W. Zhang , F. Khatkhatay , H. Wang , Q. Jia , J. L. MacManus-Driscoll , Nano Lett. 2015, 15, 7362.
|
[40] |
B. Fan , J. Yan , X. Yan , Solid State Sci. 2011, 13, 1835.
|
[41] |
Y. Wu , J. Zhang , L. Li , J. Wei , J. Li , X. Yang , C. Yan , C. Zhou , B. Zhu , ACS Appl. Energy Mater. 2018, 1, 580.
|
[42] |
M. Liu , D. Ding , Y. Bai , T. He , M. Liu , J. Electrochem. Soc. 2012, 159, B661.
|
[43] |
E. Fabbri , A. D’Epifanio , E. Di Bartolomeo , S. Licoccia , E. Traversa , Solid State Ionics 2008, 179, 558.
|
[44] |
S. Chan , X. Chen , K. Khor , Solid State Ionics 2003, 158, 29.
|
[45] |
J. S. Ahn , D. Pergolesi , M. A. Camaratta , H. Yoon , B. W. Lee , K. T. Lee , D. W. Jung , E. Traversa , E. D. Wachsman , Electrochem. Commun. 2009, 11, 1504.
|
[46] |
Z. Qiao , C. Xia , Y. Cai , M. Afzal , H. Wang , J. Qiao , B. Zhu , J. Power Sources 2018, 392, 33.
|
[47] |
S.-F. Wang , Y.-L. Liao , Y.-F. Hsu , P. Jasinski , J. Power Sources 2022, 546, 231995.
|
[48] |
S. Chan , K. Khor , Z. Xia , J. Power Sources 2001, 93, 130.
|
[49] |
N. Mahato , A. Banerjee , A. Gupta , S. Omar , K. Balani , Prog. Mater. Sci. 2015, 72, 141.
|
[50] |
K. Prabhakaran , M. Beigh , J. Lakra , N. Gokhale , S. Sharma , J. Mater. Process. Technol. 2007, 189, 178.
|
[51] |
Y. P. Fu , S. B. Wen , C. H. Lu , J. Am. Ceram. Soc. 2008, 91, 127.
|
[52] |
R. Haugsrud , T. Norby , Nat. Mater. 2006, 5, 193.
|
[53] |
A. Nenning , A. K. Opitz , C. Rameshan , R. Rameshan , R. Blume , M. Hävecker , A. Knop-Gericke , G. N. Rupprechter , B. Klötzer , J. R. Fleig , J. Phys. Chem. C 2016, 120, 1461.
|
[54] |
T. Yao , C. Guan , J. Zhang , X. Zhang , X. Huang , J. Wu , Chem. Asian J. 2017, 12, 1400.
|
[55] |
S. Saher , M. Meffert , H. Störmer , D. Gerthsen , H. J. Bouwmeester , J. Mater. Chem. A 2017, 5, 4982.
|
[56] |
S. Rauf , M. Y. Shah , B. Zhu , Z. Tayyab , N. Ali , S. Attique , C. Xia , R. Khatoon , C. Yang , M. I. Asghar , ACS Appl. Energy Mater. 2021, 4, 194.
|
[57] |
T. L. Barr , Modern ESCA: The principles and practice of X-ray photoelectron spectroscopy, CRC press, Boca Raton 2020.
|
[58] |
T. Gao , A. Kumar , Z. Shang , X. Duan , H. Wang , S. Wang , S. Ji , D. Yan , L. Luo , W. Liu , Chin. Chem. Lett. 2019, 30, 2274.
|
[59] |
K. S. Ganesh , B. Wang , J.-S. Kim , B. Zhu , J. Phys. Chem. C 2019, 123, 8569.
|
[60] |
B. Zhu , B. Wang , Y. Wang , R. Raza , W. Tan , J.-S. Kim , P. A. Van Aken , P. Lund , Nano Energy 2017, 37, 195.
|
[61] |
B. Wang , Y. Wang , L. Fan , Y. Cai , C. Xia , Y. Liu , R. Raza , P. A. van Aken , H. Wang , J. Mater. Chem. A 2016, 4, 15426.
|
[62] |
K. Novoselov , O. A. Mishchenko , O. A. Carvalho , A. Castro Neto , Science 2016, 353, aac9439.
|
[63] |
L. Li , Carbon Trends 2022, 7, 100153.
|
[64] |
Z. Wang , Q. Chen , J. Wang , J. Phys. Chem. C 2015, 119, 4752.
|
[65] |
S. Na-Phattalung , M. F. Smith , K. Kim , M.-H. Du , S.-H. Wei , S. Zhang , S. Limpijumnong , Phys. Rev. B 2006, 73, 125205.
|
[66] |
F. Xue , J. Huang , T. Li , Z. Wang , X. Zhou , L. Wei , B. Gao , Y. Zhai , Q. Li , Q. Xu , J. Magn. Magn. Mater. 2018, 446, 118.
|
[67] |
T. Wang , B. Daiber , J. M. Frost , S. A. Mann , E. C. Garnett , A. Walsh , B. Ehrler , Energy Environ. Sci. 2017, 10, 509.
|
[68] |
X. Cai , P. Zhang , S.-H. Wei , J. Semicond. 2019, 40, 92101.
|
[69] |
M. Akazawa , B. Gao , T. Hashizume , M. Hiroki , S. Yamahata , N. Shigekawa , J. Appl. Phys. 2011, 109, 13703.
|
[70] |
E. Hu , Z. Jiang , L. Fan , M. Singh , F. Wang , R. Raza , M. Sajid , J. Wang , J.-S. Kim , B. Zhu , Iscience 2021, 24, 102191.
|
[71] |
J. Li , Y. Lu , D. Li , F. Qi , L. Yu , C. Xia , Int. J. Hydrog. Energy 2021, 46, 9790.
|
[72] |
Y. Guo , H. Qi , X. Zhang , D. Cui , Z. Zhao , B. Tu , M. Cheng , Nano Lett. 2021, 21, 8764.
|
[73] |
J. Hafner , J. Comput. Chem. 2008, 29, 2044.
|
[74] |
P. E. Blöchl , Phys. Rev. B 1994, 50, 17953.
|
[75] |
J. P. Perdew , K. Burke , M. Ernzerhof , Phys. Rev. Lett. 1996, 77, 3865.
|
[76] |
S. Grimme , J. Comput. Chem. 2006, 27, 1787.
|
[77] |
H. J. Monkhorst , J. D. Pack , Phys. Rev. B 1976, 13, 5188.
|
[78] |
V. Wang , N. Xu , J.-C. Liu , Comput. Phys. Commun. 2021, 267, 108033.
|
/
〈 | 〉 |