Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb2O6 toward Lithium-Ion Capacitors as an Anode-Active Material

  • Chao Cheng ,
  • Yunsheng Yan ,
  • Minyu Jia ,
  • Yang Liu ,
  • Linrui Hou ,
  • Changzhou Yuan
Expand
  • School of Material Science and Engineering, University of Jinan, Jinan 250022, China
mse_houlr@ujn.edu.cn
mse_yuancz@ujn.edu.cn;ayuancz@163.com

Received date: 07 Nov 2022

Revised date: 12 Dec 2022

Copyright

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

The orthorhombic CuNb2O6 (O-CNO) is established as a competitive anode for lithium-ion capacitors (LICs) owing to its attractive compositional/structural merits. However, the high-temperature synthesis (>900 ℃) and controversial charge-storage mechanism always limit its applications. Herein, we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb2CTx as the niobium source. The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb2O6 to O-CNO is tentatively put forward. Furthermore, the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex) situ characterizations. Thanks to its unique structural merits and lithium-storage process, the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g-1 at 2.0 A g-1, along with long-duration cycling behaviors. Furthermore, the constructed O-CNO-based LICs exhibit a high energy (138.9 Wh kg-1) and power (4.0 kW kg-1) densities with a modest cycling stability (15.8% capacity degradation after 3000 consecutive cycles). More meaningfully, the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs.

Cite this article

Chao Cheng , Yunsheng Yan , Minyu Jia , Yang Liu , Linrui Hou , Changzhou Yuan . Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb2O6 toward Lithium-Ion Capacitors as an Anode-Active Material[J]. Energy & Environmental Materials, 2024 , 7(2) : 12583 . DOI: 10.1002/eem2.12583

1
J. Xie , Y. C. Lu , Nat. Commun. 2020, 11, 2499.

2
S. H. Zhu , C. Cheng , D. X. Wu , Y. S. Yan , L. Qin , L. R. Hou , C. Z. Yuan , Energy Fuel 2022, 36, 11760.

3
X. Wang , X. Zhang , G. Zhao , H. Hong , Z. Tang , X. Xu , H. Li , C. Zhi , C. Han , ACS Nano 2022, 16, 6093.

4
C. Han , H. Li , Y. Li , J. Zhu , C. Zhi , Nat. Commun. 2021, 12, 2400.

5
L. Li , J. Y. Zhang , F. Zaman , Y. Y. Wang , Y. M. Zhang , L. R. Hou , C. Z. Yuan , InfoMat 2021, 3, 1393.

6
J. Libich , J. Maca , J. Vondrak , O. Cech , M. Sedlarikova , J. Energy Storage 2018, 17, 224.

7
Y. Sun , J. Tang , F. Qin , J. Yuan , K. Zhang , J. Li , D. M. Zhu , L. C. Qin , J. Mater. Chem. A 2017, 5, 13601.

8
A. Jagadale , X. Zhou , R. Xiong , D. P. Dubal , J. Xu , S. Yang , Energy Storage Mater. 2019, 19, 314.

9
S. Fu , Q. Yu , Z. Liu , P. Hu , Q. Chen , S. Feng , L. Mai , L. Zhou , J. Mater. Chem. A 2019, 7, 11234.

10
Y. Qiao , S. Jiang , R. Xia , Y. Xiao , Z. Zhu , J. Liu , A. Wang , M. Gao , ACS Appl. Energy Mater. 2022, 5, 4329.

11
L. Qin , Y. Liu , S. Xu , S. Wang , X. Sun , S. Zhu , L. Hou , C. Yuan , Small Methods 2020, 4, 2000630.

12
E. Lim , C. Jo , H. Kim , M. H. Kim , Y. Mun , J. Chun , Y. Ye , J. Hwang , K. S. Ha , K. C. Roh , K. Kang , S. Yoon , J. Lee , ACS Nano 2015, 9, 7497.

13
Y. Zhou , K. Liu , Y. Zhou , J. H. Ni , A. C. Dou , M. Su , Y. Liu , J. Cent. South Univ. 2021, 27, 3625.

14
X. Chen , X. Liu , S. Hao , J. Wang , N. Ahmad , P. Zhang , P. Cui , M. Su , A. Dou , Y. Zhou , Y. Liu , Ceram. Int. 2022, 48, 27815.

15
L. T. Yang , X. Z. Zhu , X. H. Li , X. B. Zhao , K. Pei , W. B. You , X. Li , Y. J. Chen , C. F. Lin , R. C. Che , Adv. Energy Mater. 2019, 9, 1902174.

16
S. L. Cheng , X. P. Yin , S. Sarkar , Z. W. Wang , Q. A. Huang , J. J. Zhang , Y. F. Zhao , Rare Metals 2022, 41, 2645.

17
X. Zhu , J. Xu , Y. Luo , Q. Fu , G. Liang , L. Luo , Y. Chen , C. Lin , X. S. Zhao , J. Mater. Chem. A 2019, 7, 6522.

18
M. Li , A. Su , Q. Qin , Y. Qin , A. Dou , Y. Zhou , M. Su , Y. Liu , Mater. Lett. 2021, 284, 128915.

19
C. H. Huang , R. J. Li , L. J. Luo , Y. J. Chen , C. F. Lin , Mater. Technol. 2021, 37, 814.

20
L. Yan , X. Cheng , H. Yu , H. Zhu , T. Liu , R. Zheng , R. Zhang , M. Shui , J. Shu , Energy Storage Mater. 2018, 14, 159.

21
Z. Zhou , S. Lou , X. Cheng , B. Cui , W. Si , F. Ding , Y. Ma , P. Zuo , C. Du , J. Wang , G. Yin , ChemistrySelect 2020, 5, 1209.

22
L. Qin , S. Zhu , C. Cheng , D. Wu , G. Wang , L. Hou , C. Yuan , Small 2022, 18, 2107987.

23
Y. Yang , H. Zhu , J. Xiao , H. Geng , Y. Zhang , J. Zhao , G. Li , X. L. Wang , C. C. Li , Q. Liu , Adv. Mater. 2020, 32, 1905295.

24
X. Zhang , J. Zhang , S. Kong , K. Zhu , J. Yan , K. Ye , G. Wang , K. Cheng , L. Zhou , D. Cao , J. Mater. Chem. A 2019, 7, 2855.

25
R. Xia , K. Zhao , L. Y. Kuo , L. Zhang , D. M. Cunha , Y. Wang , S. Huang , J. Zheng , B. Boukamp , P. Kaghazchi , C. Sun , J. E. T. Elshof , M. Huijben , Adv. Energy Mater. 2021, 12, 2102972.

26
C. Lv , C. Lin , X. S. Zhao , Adv. Energy Mater. 2021, 12, 2102550.

27
X. M. Lou , R. J. Li , X. Z. Zhu , L. J. Luo , Y. J. Chen , C. F. Lin , H. L. Li , X. S. Zhao , ACS Appl. Mater. Interfaces 2019, 11, 6089.

28
M. Zhang , Y. Wang , H. Liu , T. Ma , J. Xie , S. Shao , Electrochim. Acta 2019, 309, 104.

29
X. Li , J. Li , R. N. Ali , Z. Wang , G. Hu , B. Xiang , Chem. Eng. J. 2019, 368, 764.

30
Y. Tang , D. Zhang , Y. Li , B. Huang , H. Li , X. Pu , Y. Geng , Sep. Purif. Technol. 2019, 220, 78.

31
S. Kamimura , S. Abe , T. Tsubota , T. Ohno , J. Photochem. Photobiol. A 2018, 356, 263.

32
H. Zhang , X. Zhang , H. Li , Y. Gao , J. Yan , K. Zhu , K. Ye , K. Cheng , G. Wang , D. Cao , J. Colloid Interface Sci. 2021, 583, 652.

33
N. Priyadarshani , G. Vinitha , T. C. Sabari Girisun , Opt. Laser Technol. 2018, 108, 287.

34
S. Y. Lee , A. S. Lim , Y. M. Kwon , K. Y. Cho , S. Yoon , Inorg. Chem. Front. 2020, 7, 3176.

35
A. M. Cruz , N. L. Alcaraz , A. F. Fuentes , L. M. Torres-Martinez , J. Power Sources 1999, 81, 255.

36
M. Sato , Y. Hama , J. Solid State Chem. 1995, 118, 193.

37
J. Norwig , H. Weitzel , H. Paulus , G. Lautenschlager , J. Rodriguez-Carvajal , H. Fuess , J. Solid State Chem. 1995, 115, 476.

38
L. Qin , Y. Liu , S. Zhu , D. Wu , G. Wang , J. Zhang , Y. Wang , L. Hou , C. Yuan , J. Mater. Chem. A 2021, 9, 20405.

39
H. Zhang , X. Zhang , Y. Gao , K. Zhu , J. Yan , K. Ye , K. Cheng , G. Wang , D. Cao , Appl. Surf. Sci. 2020, 532, 147436.

40
A. Kormanyos , A. Thomas , M. N. Huda , P. Sarker , J. P. Liu , N. Poudyal , C. Janaky , K. Rajeshwar , J. Phys. Chem. C 2016, 120, 16024.

41
D. Yin , G. Huang , Z. Na , X. Wang , Q. Li , L. Wang , ACS Energy Lett. 2017, 2, 1564.

42
H. Xu , J. Shu , X. Hu , Y. Sun , W. Luo , Y. Huang , J. Mater. Chem. A 2013, 1, 15053.

43
Q. Ji , X. Chen , Y. J. Cheng , Q. Dong , Y. Shen , Z. Yang , B. Hu , Y. Xia , ChemSusChem 2022, 15, e202200063.

44
Q. Ji , X. Gao , Q. Zhang , L. Jin , D. Wang , Y. Xia , S. Yin , S. Xia , N. Hohn , X. Zuo , X. Wang , S. Xie , Z. Xu , L. Ma , L. Chen , G. Z. Chen , J. Zhu , B. Hu , P. M. Buschbaum , P. G. Bruce , Y. J. Cheng , Adv. Funct. Mater. 2019, 29, 1904961.

45
M. A. Reddy , U. V. Varadaraju , J. Phys. Chem. C 2011, 115, 25121.

46
J. Meng , Q. He , L. Xu , X. Zhang , F. Liu , X. Wang , Q. Li , X. Xu , G. Zhang , C. Niu , Z. Xiao , Z. Liu , Z. Zhu , Y. Zhao , L. Mai , Adv. Energy Mater. 2019, 9, 1802695.

47
H. Yildirim , J. Greeley , S. K. R. S. Sankaranarayanan , J. Phys. Chem. C 2011, 115, 15661.

48
Y. D. Luna , N. Bensalah , ACS Appl. Energy Mater. 2022, 5, 7443.

49
X. Huang , W. Zhou , X. Chen , C. Jiang , Z. Zou , Electrochim. Acta 2021, 368, 137613.

50
C. Jiang , T. Liu , N. Long , X. Cheng , N. Peng , J. Zhang , R. Zheng , H. Yu , J. Shu , Ceram. Int. 2019, 45, 18111.

51
X. Cheng , S. S. Qian , H. X. Yu , H. J. Zhu , Y. Xie , R. T. Zheng , T. T. Liu , M. Shui , J. Shu , Energy Storage Mater. 2019, 16, 400.

52
M. Jia , W. Zhang , X. Cai , X. Zhan , L. Hou , C. Yuan , Z. Guo , J. Power Sources 2022, 543, 231843.

53
X. Sun , Y. An , L. Geng , X. Zhang , K. Wang , J. Yin , Q. Huo , T. Wei , X. Zhang , Y. Ma , J. Electroanal. Chem.(Lausanne) 2019, 850, 113386.

54
I. S. Ike , I. Sigalas , S. Iyuke , Phys. Chem. Chem. Phys. 2016, 18, 661.

55
X. Jiao , Q. Hao , X. Xia , D. Yao , Y. Ouyang , W. Lei , J. Power Sources 2018, 403, 66.

56
C. Yang , J. L. Lan , W. X. Liu , Y. Liu , Y. H. Yu , X. P. Yang , ACS Appl. Energy Mater. 2017, 9, 18710.

57
X. Jiao , Q. Hao , X. Xia , Z. Wu , W. Lei , Chem. Commun. 2019, 55, 2692.

58
J. H. Lee , H. K. Kim , E. Baek , M. Pecht , S. H. Lee , Y. H. Lee , J. Power Sources 2016, 301, 348.

Options
Outlines

/