Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb2O6 toward Lithium-Ion Capacitors as an Anode-Active Material
Chao Cheng , Yunsheng Yan , Minyu Jia , Yang Liu , Linrui Hou , Changzhou Yuan
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12583
Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb2O6 toward Lithium-Ion Capacitors as an Anode-Active Material
The orthorhombic CuNb2O6 (O-CNO) is established as a competitive anode for lithium-ion capacitors (LICs) owing to its attractive compositional/structural merits. However, the high-temperature synthesis (>900 ℃) and controversial charge-storage mechanism always limit its applications. Herein, we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb2CTx as the niobium source. The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb2O6 to O-CNO is tentatively put forward. Furthermore, the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex) situ characterizations. Thanks to its unique structural merits and lithium-storage process, the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g-1 at 2.0 A g-1, along with long-duration cycling behaviors. Furthermore, the constructed O-CNO-based LICs exhibit a high energy (138.9 Wh kg-1) and power (4.0 kW kg-1) densities with a modest cycling stability (15.8% capacity degradation after 3000 consecutive cycles). More meaningfully, the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs.
high-rate anodes / lithium-ion capacitors / lithium-storage mechanisms / orthorhombic CuNb 2O 6 / phase transform
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |