Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb2O6 toward Lithium-Ion Capacitors as an Anode-Active Material

Chao Cheng, Yunsheng Yan, Minyu Jia, Yang Liu, Linrui Hou, Changzhou Yuan

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12583. DOI: 10.1002/eem2.12583
RESEARCH ARTICLE

Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb2O6 toward Lithium-Ion Capacitors as an Anode-Active Material

Author information +
History +

Abstract

The orthorhombic CuNb2O6 (O-CNO) is established as a competitive anode for lithium-ion capacitors (LICs) owing to its attractive compositional/structural merits. However, the high-temperature synthesis (>900 ℃) and controversial charge-storage mechanism always limit its applications. Herein, we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb2CTx as the niobium source. The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb2O6 to O-CNO is tentatively put forward. Furthermore, the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex) situ characterizations. Thanks to its unique structural merits and lithium-storage process, the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g-1 at 2.0 A g-1, along with long-duration cycling behaviors. Furthermore, the constructed O-CNO-based LICs exhibit a high energy (138.9 Wh kg-1) and power (4.0 kW kg-1) densities with a modest cycling stability (15.8% capacity degradation after 3000 consecutive cycles). More meaningfully, the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs.

Keywords

high-rate anodes / lithium-ion capacitors / lithium-storage mechanisms / orthorhombic CuNb2O6 / phase transform

Cite this article

Download citation ▾
Chao Cheng, Yunsheng Yan, Minyu Jia, Yang Liu, Linrui Hou, Changzhou Yuan. Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb2O6 toward Lithium-Ion Capacitors as an Anode-Active Material. Energy & Environmental Materials, 2024, 7(2): 12583 https://doi.org/10.1002/eem2.12583

References

[1]
J. Xie , Y. C. Lu , Nat. Commun. 2020, 11, 2499.
[2]
S. H. Zhu , C. Cheng , D. X. Wu , Y. S. Yan , L. Qin , L. R. Hou , C. Z. Yuan , Energy Fuel 2022, 36, 11760.
[3]
X. Wang , X. Zhang , G. Zhao , H. Hong , Z. Tang , X. Xu , H. Li , C. Zhi , C. Han , ACS Nano 2022, 16, 6093.
[4]
C. Han , H. Li , Y. Li , J. Zhu , C. Zhi , Nat. Commun. 2021, 12, 2400.
[5]
L. Li , J. Y. Zhang , F. Zaman , Y. Y. Wang , Y. M. Zhang , L. R. Hou , C. Z. Yuan , InfoMat 2021, 3, 1393.
[6]
J. Libich , J. Maca , J. Vondrak , O. Cech , M. Sedlarikova , J. Energy Storage 2018, 17, 224.
[7]
Y. Sun , J. Tang , F. Qin , J. Yuan , K. Zhang , J. Li , D. M. Zhu , L. C. Qin , J. Mater. Chem. A 2017, 5, 13601.
[8]
A. Jagadale , X. Zhou , R. Xiong , D. P. Dubal , J. Xu , S. Yang , Energy Storage Mater. 2019, 19, 314.
[9]
S. Fu , Q. Yu , Z. Liu , P. Hu , Q. Chen , S. Feng , L. Mai , L. Zhou , J. Mater. Chem. A 2019, 7, 11234.
[10]
Y. Qiao , S. Jiang , R. Xia , Y. Xiao , Z. Zhu , J. Liu , A. Wang , M. Gao , ACS Appl. Energy Mater. 2022, 5, 4329.
[11]
L. Qin , Y. Liu , S. Xu , S. Wang , X. Sun , S. Zhu , L. Hou , C. Yuan , Small Methods 2020, 4, 2000630.
[12]
E. Lim , C. Jo , H. Kim , M. H. Kim , Y. Mun , J. Chun , Y. Ye , J. Hwang , K. S. Ha , K. C. Roh , K. Kang , S. Yoon , J. Lee , ACS Nano 2015, 9, 7497.
[13]
Y. Zhou , K. Liu , Y. Zhou , J. H. Ni , A. C. Dou , M. Su , Y. Liu , J. Cent. South Univ. 2021, 27, 3625.
[14]
X. Chen , X. Liu , S. Hao , J. Wang , N. Ahmad , P. Zhang , P. Cui , M. Su , A. Dou , Y. Zhou , Y. Liu , Ceram. Int. 2022, 48, 27815.
[15]
L. T. Yang , X. Z. Zhu , X. H. Li , X. B. Zhao , K. Pei , W. B. You , X. Li , Y. J. Chen , C. F. Lin , R. C. Che , Adv. Energy Mater. 2019, 9, 1902174.
[16]
S. L. Cheng , X. P. Yin , S. Sarkar , Z. W. Wang , Q. A. Huang , J. J. Zhang , Y. F. Zhao , Rare Metals 2022, 41, 2645.
[17]
X. Zhu , J. Xu , Y. Luo , Q. Fu , G. Liang , L. Luo , Y. Chen , C. Lin , X. S. Zhao , J. Mater. Chem. A 2019, 7, 6522.
[18]
M. Li , A. Su , Q. Qin , Y. Qin , A. Dou , Y. Zhou , M. Su , Y. Liu , Mater. Lett. 2021, 284, 128915.
[19]
C. H. Huang , R. J. Li , L. J. Luo , Y. J. Chen , C. F. Lin , Mater. Technol. 2021, 37, 814.
[20]
L. Yan , X. Cheng , H. Yu , H. Zhu , T. Liu , R. Zheng , R. Zhang , M. Shui , J. Shu , Energy Storage Mater. 2018, 14, 159.
[21]
Z. Zhou , S. Lou , X. Cheng , B. Cui , W. Si , F. Ding , Y. Ma , P. Zuo , C. Du , J. Wang , G. Yin , ChemistrySelect 2020, 5, 1209.
[22]
L. Qin , S. Zhu , C. Cheng , D. Wu , G. Wang , L. Hou , C. Yuan , Small 2022, 18, 2107987.
[23]
Y. Yang , H. Zhu , J. Xiao , H. Geng , Y. Zhang , J. Zhao , G. Li , X. L. Wang , C. C. Li , Q. Liu , Adv. Mater. 2020, 32, 1905295.
[24]
X. Zhang , J. Zhang , S. Kong , K. Zhu , J. Yan , K. Ye , G. Wang , K. Cheng , L. Zhou , D. Cao , J. Mater. Chem. A 2019, 7, 2855.
[25]
R. Xia , K. Zhao , L. Y. Kuo , L. Zhang , D. M. Cunha , Y. Wang , S. Huang , J. Zheng , B. Boukamp , P. Kaghazchi , C. Sun , J. E. T. Elshof , M. Huijben , Adv. Energy Mater. 2021, 12, 2102972.
[26]
C. Lv , C. Lin , X. S. Zhao , Adv. Energy Mater. 2021, 12, 2102550.
[27]
X. M. Lou , R. J. Li , X. Z. Zhu , L. J. Luo , Y. J. Chen , C. F. Lin , H. L. Li , X. S. Zhao , ACS Appl. Mater. Interfaces 2019, 11, 6089.
[28]
M. Zhang , Y. Wang , H. Liu , T. Ma , J. Xie , S. Shao , Electrochim. Acta 2019, 309, 104.
[29]
X. Li , J. Li , R. N. Ali , Z. Wang , G. Hu , B. Xiang , Chem. Eng. J. 2019, 368, 764.
[30]
Y. Tang , D. Zhang , Y. Li , B. Huang , H. Li , X. Pu , Y. Geng , Sep. Purif. Technol. 2019, 220, 78.
[31]
S. Kamimura , S. Abe , T. Tsubota , T. Ohno , J. Photochem. Photobiol. A 2018, 356, 263.
[32]
H. Zhang , X. Zhang , H. Li , Y. Gao , J. Yan , K. Zhu , K. Ye , K. Cheng , G. Wang , D. Cao , J. Colloid Interface Sci. 2021, 583, 652.
[33]
N. Priyadarshani , G. Vinitha , T. C. Sabari Girisun , Opt. Laser Technol. 2018, 108, 287.
[34]
S. Y. Lee , A. S. Lim , Y. M. Kwon , K. Y. Cho , S. Yoon , Inorg. Chem. Front. 2020, 7, 3176.
[35]
A. M. Cruz , N. L. Alcaraz , A. F. Fuentes , L. M. Torres-Martinez , J. Power Sources 1999, 81, 255.
[36]
M. Sato , Y. Hama , J. Solid State Chem. 1995, 118, 193.
[37]
J. Norwig , H. Weitzel , H. Paulus , G. Lautenschlager , J. Rodriguez-Carvajal , H. Fuess , J. Solid State Chem. 1995, 115, 476.
[38]
L. Qin , Y. Liu , S. Zhu , D. Wu , G. Wang , J. Zhang , Y. Wang , L. Hou , C. Yuan , J. Mater. Chem. A 2021, 9, 20405.
[39]
H. Zhang , X. Zhang , Y. Gao , K. Zhu , J. Yan , K. Ye , K. Cheng , G. Wang , D. Cao , Appl. Surf. Sci. 2020, 532, 147436.
[40]
A. Kormanyos , A. Thomas , M. N. Huda , P. Sarker , J. P. Liu , N. Poudyal , C. Janaky , K. Rajeshwar , J. Phys. Chem. C 2016, 120, 16024.
[41]
D. Yin , G. Huang , Z. Na , X. Wang , Q. Li , L. Wang , ACS Energy Lett. 2017, 2, 1564.
[42]
H. Xu , J. Shu , X. Hu , Y. Sun , W. Luo , Y. Huang , J. Mater. Chem. A 2013, 1, 15053.
[43]
Q. Ji , X. Chen , Y. J. Cheng , Q. Dong , Y. Shen , Z. Yang , B. Hu , Y. Xia , ChemSusChem 2022, 15, e202200063.
[44]
Q. Ji , X. Gao , Q. Zhang , L. Jin , D. Wang , Y. Xia , S. Yin , S. Xia , N. Hohn , X. Zuo , X. Wang , S. Xie , Z. Xu , L. Ma , L. Chen , G. Z. Chen , J. Zhu , B. Hu , P. M. Buschbaum , P. G. Bruce , Y. J. Cheng , Adv. Funct. Mater. 2019, 29, 1904961.
[45]
M. A. Reddy , U. V. Varadaraju , J. Phys. Chem. C 2011, 115, 25121.
[46]
J. Meng , Q. He , L. Xu , X. Zhang , F. Liu , X. Wang , Q. Li , X. Xu , G. Zhang , C. Niu , Z. Xiao , Z. Liu , Z. Zhu , Y. Zhao , L. Mai , Adv. Energy Mater. 2019, 9, 1802695.
[47]
H. Yildirim , J. Greeley , S. K. R. S. Sankaranarayanan , J. Phys. Chem. C 2011, 115, 15661.
[48]
Y. D. Luna , N. Bensalah , ACS Appl. Energy Mater. 2022, 5, 7443.
[49]
X. Huang , W. Zhou , X. Chen , C. Jiang , Z. Zou , Electrochim. Acta 2021, 368, 137613.
[50]
C. Jiang , T. Liu , N. Long , X. Cheng , N. Peng , J. Zhang , R. Zheng , H. Yu , J. Shu , Ceram. Int. 2019, 45, 18111.
[51]
X. Cheng , S. S. Qian , H. X. Yu , H. J. Zhu , Y. Xie , R. T. Zheng , T. T. Liu , M. Shui , J. Shu , Energy Storage Mater. 2019, 16, 400.
[52]
M. Jia , W. Zhang , X. Cai , X. Zhan , L. Hou , C. Yuan , Z. Guo , J. Power Sources 2022, 543, 231843.
[53]
X. Sun , Y. An , L. Geng , X. Zhang , K. Wang , J. Yin , Q. Huo , T. Wei , X. Zhang , Y. Ma , J. Electroanal. Chem.(Lausanne) 2019, 850, 113386.
[54]
I. S. Ike , I. Sigalas , S. Iyuke , Phys. Chem. Chem. Phys. 2016, 18, 661.
[55]
X. Jiao , Q. Hao , X. Xia , D. Yao , Y. Ouyang , W. Lei , J. Power Sources 2018, 403, 66.
[56]
C. Yang , J. L. Lan , W. X. Liu , Y. Liu , Y. H. Yu , X. P. Yang , ACS Appl. Energy Mater. 2017, 9, 18710.
[57]
X. Jiao , Q. Hao , X. Xia , Z. Wu , W. Lei , Chem. Commun. 2019, 55, 2692.
[58]
J. H. Lee , H. K. Kim , E. Baek , M. Pecht , S. H. Lee , Y. H. Lee , J. Power Sources 2016, 301, 348.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/