A Room-Temperature Chloride-Conducting Metal-Organic Crystal [Al(DMSO)6]Cl3 for Potential Solid-State Chloride-Shuttle Batteries

  • Bing Wu ,
  • Jan Luxa ,
  • Jiří Šturala ,
  • Shuangying Wei ,
  • Lukáš Děkanovský ,
  • Abhilash Karuthedath Parameswaran ,
  • Min Li ,
  • Zdenek Sofer
Expand
  • Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5 166 28, Prague Czech Republic
wui@vscht.cz
soferz@vscht.cz

Received date: 18 Jun 2022

Revised date: 29 Aug 2022

Copyright

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage, where the chloride ion batteries (CIBs) take over the role. The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte. On the flipside, its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl conductivity. The present study reports [Al(DMSO)6]Cl3, a solid-state metal-organic material, allows chloride ion transfer. The strong Al-Cl bonds in AlCl3 are broken down after coordinating of Al3+ by ligand DMSO, and Cl in the resulting compound is weakly bound to complexions [Al(DMSO)6]3+, which may facilitate Cl migration. By partial replacement of Cl with PF6 , the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172 × 10–5 S cm–1 to 2.012 × 10–4 S cm–1. When they are assembled with Ag (anode)/Ag-AgCl (cathode) electrode system, reversible electrochemical redox reactions occur on both sides, demonstrating its potential for solid-state chloride ion batteries. The strategy by weakening the bonding interaction using organic ligands between Cl and central metallic ions may provide new ideas for developing solid chloride-ion conductors.

Cite this article

Bing Wu , Jan Luxa , Jiří Šturala , Shuangying Wei , Lukáš Děkanovský , Abhilash Karuthedath Parameswaran , Min Li , Zdenek Sofer . A Room-Temperature Chloride-Conducting Metal-Organic Crystal [Al(DMSO)6]Cl3 for Potential Solid-State Chloride-Shuttle Batteries[J]. Energy & Environmental Materials, 2024 , 7(1) : 12530 . DOI: 10.1002/eem2.12530

1
Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Adv. Funct. Mater. 2020, 30, 2003430.

2
S. Y. Kim, Y. J. Jang, Y. M. Kim, J. K. Lee, H. C. Moon, Adv. Funct. Mater. 2022, 2200757, 32.

3
T. P. Bailey, C. Uher, Curr. Opin. Green Sustainable Chem. 2017, 4, 58.

4
S. H. Kim, U. J. Choe, N. Y. Kim, S. Y. Lee, Battery Energy 2022, 1, 20210012.

5
D. Zhang, T. Yoshinari, K. Yamamoto, Y. Kitaguchi, A. Ochi, K. Nakanishi, H. Miki, S. Nakanishi, H. Iba, T. Watanabe, ACS Appl. Energy Mater. 2021, 4, 3352.

6
R. Chen, W. Qu, X. Guo, L. Li, F. Wu, Mater. Horiz. 2016, 3, 487.

7
Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng, H. Zou, Y. Chen, W. Kuang, K. Ding, L. Chen, Energy Storage Mater. 2022, 47, 262.

8
D. Lei, K. Shi, H. Ye, Z. Wan, Y. Wang, L. Shen, B. Li, Q. H. Yang, F. Kang, Y. B. He, Adv. Funct. Mater. 2018, 28, 1707570.

9
N. Dubouis, T. Marchandier, G. Rousse, F. Marchini, F. Fauth, M. Avdeev, A. Iadecola, B. Porcheron, M. Deschamps, J.-M. Tarascon, Nat. Mater. 2021, 22, 1545.

10
A. Manthiram, X. Yu, S. Wang, Wang, Nat. Rev. Mater. 2017,

DOI

11
Q. Liu, Y. Wang, X. Yang, D. Zhou, X. Wang, P. Jaumaux, F. Kang, B. Li, X. Ji, G. Wang, Chem 2021, 7, 1993.

12
H. Zhang, L. Wang, X. He, Battery Energy 2022, 1, 20210011.

13
H. Kwak, D. Han, J. Lyoo, J. Park, S. H. Jung, a Y. Han, G. Kwon, H. Kim, S. T. Hong, K. W. Nam, Adv. Energy Mater. 2021, 11, 2003190.

14
Y. Horowitz, C. Schmidt, D.-h. Yoon, L. M. Riegger, L. Katzenmeier, G. M. Bosch, M. Noked, Y. Ein-Eli, J. Janek, W. G. Zeier, Energ. Technol. 2020, 8, 2000580.

15
C. Chen, T. Yu, M. Yang, X. Zhao, X. Shen, Adv. Sci. 2019, 6, 1802130.

16
B. Wu, G. Hou, E. Kovalska, V. Mazanek, P. Marvan, L. Liao, L. Dekanovsky, D. Sedmidubsky, I. Marek, C. Hervoches, Inorg. Chem. 2022, 61, 4092.

17
X. Zhao, S. Ren, M. Bruns, M. Fichtner, J. Power Sources 2014, 245, 706.

18
X. Zhao, Z. Zhao-Karger, M. Fichtner, X. Shen, Angew. Chem. Int. Ed. 2020, 59, 5902.

19
Z. Xue, Z. Gao, X. Zhao, Energy Environ. Mater. 2022, e12442.

20
C. Zhang, S. Sun, M. Wu, X. Zhao, Chin. Chem. Lett. 2022, 33, 2200.

21
P. Gao, X. Zhao, Z. Zhao-Karger, T. Diemant, R. J. R. Behm, M. Fichtner, ACS Appl. Mater. Interfaces 2014, 6, 22430.

22
P. Gao, M. A. Reddy, X. Mu, T. Diemant, L. Zhang, Z. Zhao-Karger, V. S. K. Chakravadhanula, O. Clemens, R. J. Behm, M. Fichtner, Angew. Chem. 2016, 128, 4357.

23
X. Zhao, Q. Li, Z. Zhao-Karger, P. Gao, K. Fink, X. Shen, M. Fichtner, ACS Appl. Mater. Interfaces 2014, 6, 10997.

24
X. Zhao, Z. Zhao, M. Yang, H. Xia, T. Yu, X. Shen, ACS Appl. Mater. Interfaces 2017, 9, 2535.

25
T. Yu, Q. Li, X. Zhao, H. Xia, L. Ma, J. Wang, Y. S. Meng, X. Shen, ACS Energy Lett. 2017, 2, 2341.

26
T. Yu, R. Yang, X. Zhao, X. Shen, ChemElectroChem 2019, 6, 1761.

27
R. Yang, T. Yu, X. Zhao, J. Alloys Compd. 2019, 788, 407.

28
M. Forsyth, L. Porcarelli, X. Wang, N. Goujon, D. Mecerreyes, Acc. Chem. Res. 2019, 52, 686.

29
R. Sakamoto, N. Shirai, A. Inoishi, S. Okada, ChemElectroChem 2021, 8, 4441.

30
T. Xia, Y. Li, L. Huang, W. Ji, M. Yang, X. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 18634.

31
F. Gschwind, D. Steinle, D. Sandbeck, C. Schmidt, E. von Hauff, ChemistryOpen 2016, 5, 525.

32
K. Funke, Sci. Technol. Adv. Mater. 2013, 14, 43502.

33
D. Boström, M. Clausén, M. Sandström, Sect. Sect. E Struct. Rep. Online 2003, 59, m934.

34
K. Kim, D. J. Siegel, J. Mater. Chem. A 2019, 7, 3216.

35
A. Migdał-Mikuli, N. Górska, E. Szostak, J. Therm. Anal. Calorim. 2007, 90, 223.

36
N. Górska, E. Mikuli, Vib. Spectrosc. 2016, 86, 253.

37
K. D. Fulfer, D. G. Kuroda, PCCP 2018, 20, 22710.

38
E. Gillet, B. Ealet, Surf. Sci. 1992, 273, 427.

39
H.-L. Guo, H. Sun, Z.-L. Jiang, C.-S. Luo, M.-Y. Gao, M.-H. Wei, J.-Y. Hu, W.-K. Shi, J.-Y. Cheng, H.-J. Zhou, J. Mater. Sci. 2019, 54, 4874.

40
A. Xu, R. Wang, M. Yao, J. Cao, M. Li, C. Yang, F. Liu, J. Ma, Nanomaterials-Basel 2022, 12, 2082.

41
Y. M. Mikhaylichenko, M. Haukka, V. O.Pavlenko, I. O. Fritsky, T. S. Iskenderov, Acta Crystallogr. Sect. Sect. E Struct. Rep. Online 2008, 64, m904.

42
P. R. Martínez-Alanis, R. A. Toscano, I.Castillo, Acta Crystallogr. Sect. Sect. E Struct. Rep. Online 2005, 61, m2179.

43
A. Abbasi, E. D. Risberg, L. Eriksson, J. Mink, I. Persson, M. Sandström, Y. V. Sidorov, M. Y. Skripkin, A.-S. Ullström, Inorg. Chem. 2007, 46, 7731.

Options
Outlines

/