A Room-Temperature Chloride-Conducting Metal-Organic Crystal [Al(DMSO)6]Cl3 for Potential Solid-State Chloride-Shuttle Batteries

Bing Wu, Jan Luxa, Jiří Šturala, Shuangying Wei, Lukáš Děkanovský, Abhilash Karuthedath Parameswaran, Min Li, Zdenek Sofer

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12530. DOI: 10.1002/eem2.12530
RESEARCH ARTICLE

A Room-Temperature Chloride-Conducting Metal-Organic Crystal [Al(DMSO)6]Cl3 for Potential Solid-State Chloride-Shuttle Batteries

Author information +
History +

Abstract

The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage, where the chloride ion batteries (CIBs) take over the role. The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte. On the flipside, its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl conductivity. The present study reports [Al(DMSO)6]Cl3, a solid-state metal-organic material, allows chloride ion transfer. The strong Al-Cl bonds in AlCl3 are broken down after coordinating of Al3+ by ligand DMSO, and Cl in the resulting compound is weakly bound to complexions [Al(DMSO)6]3+, which may facilitate Cl migration. By partial replacement of Cl with PF6 , the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172 × 10–5 S cm–1 to 2.012 × 10–4 S cm–1. When they are assembled with Ag (anode)/Ag-AgCl (cathode) electrode system, reversible electrochemical redox reactions occur on both sides, demonstrating its potential for solid-state chloride ion batteries. The strategy by weakening the bonding interaction using organic ligands between Cl and central metallic ions may provide new ideas for developing solid chloride-ion conductors.

Keywords

[Al(DMSO)6]Cl3 / chloride-ion batteries / ionic conductivity / metal-organic / solid-state electrolytes

Cite this article

Download citation ▾
Bing Wu, Jan Luxa, Jiří Šturala, Shuangying Wei, Lukáš Děkanovský, Abhilash Karuthedath Parameswaran, Min Li, Zdenek Sofer. A Room-Temperature Chloride-Conducting Metal-Organic Crystal [Al(DMSO)6]Cl3 for Potential Solid-State Chloride-Shuttle Batteries. Energy & Environmental Materials, 2024, 7(1): 12530 https://doi.org/10.1002/eem2.12530

References

[1]
Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Adv. Funct. Mater. 2020, 30, 2003430.
[2]
S. Y. Kim, Y. J. Jang, Y. M. Kim, J. K. Lee, H. C. Moon, Adv. Funct. Mater. 2022, 2200757, 32.
[3]
T. P. Bailey, C. Uher, Curr. Opin. Green Sustainable Chem. 2017, 4, 58.
[4]
S. H. Kim, U. J. Choe, N. Y. Kim, S. Y. Lee, Battery Energy 2022, 1, 20210012.
[5]
D. Zhang, T. Yoshinari, K. Yamamoto, Y. Kitaguchi, A. Ochi, K. Nakanishi, H. Miki, S. Nakanishi, H. Iba, T. Watanabe, ACS Appl. Energy Mater. 2021, 4, 3352.
[6]
R. Chen, W. Qu, X. Guo, L. Li, F. Wu, Mater. Horiz. 2016, 3, 487.
[7]
Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng, H. Zou, Y. Chen, W. Kuang, K. Ding, L. Chen, Energy Storage Mater. 2022, 47, 262.
[8]
D. Lei, K. Shi, H. Ye, Z. Wan, Y. Wang, L. Shen, B. Li, Q. H. Yang, F. Kang, Y. B. He, Adv. Funct. Mater. 2018, 28, 1707570.
[9]
N. Dubouis, T. Marchandier, G. Rousse, F. Marchini, F. Fauth, M. Avdeev, A. Iadecola, B. Porcheron, M. Deschamps, J.-M. Tarascon, Nat. Mater. 2021, 22, 1545.
[10]
A. Manthiram, X. Yu, S. Wang, Wang, Nat. Rev. Mater. 2017,
CrossRef Google scholar
[11]
Q. Liu, Y. Wang, X. Yang, D. Zhou, X. Wang, P. Jaumaux, F. Kang, B. Li, X. Ji, G. Wang, Chem 2021, 7, 1993.
[12]
H. Zhang, L. Wang, X. He, Battery Energy 2022, 1, 20210011.
[13]
H. Kwak, D. Han, J. Lyoo, J. Park, S. H. Jung, a Y. Han, G. Kwon, H. Kim, S. T. Hong, K. W. Nam, Adv. Energy Mater. 2021, 11, 2003190.
[14]
Y. Horowitz, C. Schmidt, D.-h. Yoon, L. M. Riegger, L. Katzenmeier, G. M. Bosch, M. Noked, Y. Ein-Eli, J. Janek, W. G. Zeier, Energ. Technol. 2020, 8, 2000580.
[15]
C. Chen, T. Yu, M. Yang, X. Zhao, X. Shen, Adv. Sci. 2019, 6, 1802130.
[16]
B. Wu, G. Hou, E. Kovalska, V. Mazanek, P. Marvan, L. Liao, L. Dekanovsky, D. Sedmidubsky, I. Marek, C. Hervoches, Inorg. Chem. 2022, 61, 4092.
[17]
X. Zhao, S. Ren, M. Bruns, M. Fichtner, J. Power Sources 2014, 245, 706.
[18]
X. Zhao, Z. Zhao-Karger, M. Fichtner, X. Shen, Angew. Chem. Int. Ed. 2020, 59, 5902.
[19]
Z. Xue, Z. Gao, X. Zhao, Energy Environ. Mater. 2022, e12442.
[20]
C. Zhang, S. Sun, M. Wu, X. Zhao, Chin. Chem. Lett. 2022, 33, 2200.
[21]
P. Gao, X. Zhao, Z. Zhao-Karger, T. Diemant, R. J. R. Behm, M. Fichtner, ACS Appl. Mater. Interfaces 2014, 6, 22430.
[22]
P. Gao, M. A. Reddy, X. Mu, T. Diemant, L. Zhang, Z. Zhao-Karger, V. S. K. Chakravadhanula, O. Clemens, R. J. Behm, M. Fichtner, Angew. Chem. 2016, 128, 4357.
[23]
X. Zhao, Q. Li, Z. Zhao-Karger, P. Gao, K. Fink, X. Shen, M. Fichtner, ACS Appl. Mater. Interfaces 2014, 6, 10997.
[24]
X. Zhao, Z. Zhao, M. Yang, H. Xia, T. Yu, X. Shen, ACS Appl. Mater. Interfaces 2017, 9, 2535.
[25]
T. Yu, Q. Li, X. Zhao, H. Xia, L. Ma, J. Wang, Y. S. Meng, X. Shen, ACS Energy Lett. 2017, 2, 2341.
[26]
T. Yu, R. Yang, X. Zhao, X. Shen, ChemElectroChem 2019, 6, 1761.
[27]
R. Yang, T. Yu, X. Zhao, J. Alloys Compd. 2019, 788, 407.
[28]
M. Forsyth, L. Porcarelli, X. Wang, N. Goujon, D. Mecerreyes, Acc. Chem. Res. 2019, 52, 686.
[29]
R. Sakamoto, N. Shirai, A. Inoishi, S. Okada, ChemElectroChem 2021, 8, 4441.
[30]
T. Xia, Y. Li, L. Huang, W. Ji, M. Yang, X. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 18634.
[31]
F. Gschwind, D. Steinle, D. Sandbeck, C. Schmidt, E. von Hauff, ChemistryOpen 2016, 5, 525.
[32]
K. Funke, Sci. Technol. Adv. Mater. 2013, 14, 43502.
[33]
D. Boström, M. Clausén, M. Sandström, Sect. Sect. E Struct. Rep. Online 2003, 59, m934.
[34]
K. Kim, D. J. Siegel, J. Mater. Chem. A 2019, 7, 3216.
[35]
A. Migdał-Mikuli, N. Górska, E. Szostak, J. Therm. Anal. Calorim. 2007, 90, 223.
[36]
N. Górska, E. Mikuli, Vib. Spectrosc. 2016, 86, 253.
[37]
K. D. Fulfer, D. G. Kuroda, PCCP 2018, 20, 22710.
[38]
E. Gillet, B. Ealet, Surf. Sci. 1992, 273, 427.
[39]
H.-L. Guo, H. Sun, Z.-L. Jiang, C.-S. Luo, M.-Y. Gao, M.-H. Wei, J.-Y. Hu, W.-K. Shi, J.-Y. Cheng, H.-J. Zhou, J. Mater. Sci. 2019, 54, 4874.
[40]
A. Xu, R. Wang, M. Yao, J. Cao, M. Li, C. Yang, F. Liu, J. Ma, Nanomaterials-Basel 2022, 12, 2082.
[41]
Y. M. Mikhaylichenko, M. Haukka, V. O.Pavlenko, I. O. Fritsky, T. S. Iskenderov, Acta Crystallogr. Sect. Sect. E Struct. Rep. Online 2008, 64, m904.
[42]
P. R. Martínez-Alanis, R. A. Toscano, I.Castillo, Acta Crystallogr. Sect. Sect. E Struct. Rep. Online 2005, 61, m2179.
[43]
A. Abbasi, E. D. Risberg, L. Eriksson, J. Mink, I. Persson, M. Sandström, Y. V. Sidorov, M. Y. Skripkin, A.-S. Ullström, Inorg. Chem. 2007, 46, 7731.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/