Enhancing I0/I- Conversion Efficiency by Starch Confinement in Zinc-Iodine Battery

  • Danyang Zhao 1 ,
  • Qiancheng Zhu 2 ,
  • Qiancheng Zhou 1 ,
  • Wenming Zhang 2 ,
  • Ying Yu , 1 ,
  • Shuo Chen , 3 ,
  • Zhifeng Ren , 3
Expand
  • 1. Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
  • 2. National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
  • 3. Department of Physics and TcSUH, University of Houston, Houston Texas 77204, USA
yuying01@mail.ccnu.edu.cn
schen34@uh.edu
zren@uh.edu

Received date: 09 Jul 2022

Revised date: 02 Sep 2022

Copyright

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

The redox couple of I0/I- in aqueous rechargeable iodine-zinc (I2-Zn) batteries is a promising energy storage resource since it is safe and cost-effective, and provides steady output voltage. However, the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide (I3- and I5-) and side reactions on the Zn anode. Starch is a very low-cost and widely sourced food used daily around the world. “Starch turns blue when it encounters iodine” is a classic chemical reaction, which results from the unique structure of the helix starch molecule-iodine complex. Inspired by this, we employ starch to confine the shuttling of polyiodide, and thus, the I0/I- conversion efficiency of an I2-Zn battery is clearly enhanced. According to the detailed characterizations and theoretical DFT calculation results, the enhancement of I0/I- conversion efficiency is mainly originated from the strong bonding between the charged products of I3- and I5- and the rich hydroxyl groups in starch. This work provides inspiration for the rational design of high-performance and low-cost I2-Zn in AZIBs.

Cite this article

Danyang Zhao , Qiancheng Zhu , Qiancheng Zhou , Wenming Zhang , Ying Yu , Shuo Chen , Zhifeng Ren . Enhancing I0/I- Conversion Efficiency by Starch Confinement in Zinc-Iodine Battery[J]. Energy & Environmental Materials, 2024 , 7(1) : 12522 . DOI: 10.1002/eem2.12522

1
J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.

2
B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

3
H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He, H. Zhou, Adv. Mater. 2020, 32, 2004240.

4
Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K. A. Owusu, L. Mai, Y. Yu, Adv. Energy Mater. 2019, 9, 1901081.

5
G. Yasin, M. Arif, T. Mehtab, X. Lu, D. Yu, N. Muhammad, M. T. Nazir, H. Song, Energy Storage Mater. 2020, 25, 644.

6
H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu, X. He, Energy Storage Mater. 2020, 33, 188.

7
W. Ling, F. Mo, J. Q. Wang, Q. J. Liu, Y. Liu, Q. X. Yang, Y. J. Qiu, Y. Huang, Mater. Today Phys. 2021, 20, 100458.

8
Y. Q. Jiang, K. Ma, M. L. Sun, Y. Y. Li, J. P. Liu, Energy Environ. Mater. 2022,

DOI

9
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, S.-Z. Qiao, Sci Adv 2020, 6, eaba4098.

10
Q. Zhu, M. Cheng, B. Zhang, K. Jin, S. Chen, Z. Ren, Y. Yu, Adv. Funct. Mater. 2019, 29, 1905979.

11
Y. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 2020, 5, 646.

12
Q. Zhu, L. Yu, S. Song, D. Wang, D. Zhao, J. Zhou, Y. Yu, S. Chen, Z. Ren, Mater. Today Phys. 2021, 19, 100425.

13
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 2020, 49, 4203.

14
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 2019, 4, 495.

15
C. Huang, Q. Wang, G. Tian, D. Zhang, Mater. Today Phys. 2021, 21, 100518.

16
L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li, H. Huang, C. Zhi, Angew. Chem. Int. Ed. 2021, 60, 3791.

17
H. Tian, T. Gao, X. Li, X. Wang, C. Luo, X. Fan, C. Yang, L. Suo, Z. Ma, W. Han, C. Wang, Nat. Commun. 2017, 8, 14083.

18
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi, X. Zhou, Z. Li, L. Gao, L. Zhang, X. Liang, Nat. Commun. 2021, 12, 170.

19
C. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lü, C.-J. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Y. Wang, O. Borodin, Y. Ren, K. Xu, C. Wang, Nature 2019, 569, 245.

20
C. Sun, X. Shi, Y. Zhang, J. Liang, J. Qu, C. Lai, ACS Nano 2020, 14, 1176.

21
H. Tang, W. Li, L. Pan, K. Tu, F. Du, T. Qiu, J. Yang, C. P. Cullen, N. McEvoy, C. Zhang, Adv. Funct. Mater. 2019, 29, 1901907.

22
X. Li, N. Li, Z. Huang, Z. Chen, G. Liang, Q. Yang, M. Li, Y. Zhao, L. Ma, B. Dong, Q. Huang, J. Fan, C. Zhi, Adv. Mater. 2021, 33, 2006897.

23
H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao, G. Li, X. S. Li, K. S. Han, K. T. Mueller, V. Sprenkle, J. Liu, ACS Energy Lett. 2017, 2, 2674.

24
K. K. Sonigara, J. Zhao, H. K. Machhi, G. Cui, S. S. Soni, Adv. Energy Mater. 2020, 10, 2001997.

25
D. Yu, A. Kumar, T. A. Nguyen, M. T. Nazir, G. Yasin, ACS Sustainable Chem. Eng. 2020, 8, 13769.

26
X. Li, T. Gao, F. Han, Z. Ma, X. Fan, S. Hou, N. Eidson, W. Li, C. Wang, Adv. Energy Mater. 2018, 8, 1701728.

27
J. J. Hong, L. Zhu, C. Chen, L. Tang, H. Jiang, B. Jin, T. C. Gallagher, Q. Guo, C. Fang, X. Ji, Angew. Chem. Int. Ed. 2019, 131, 16057.

28
W. Li, K. Wang, K. Jiang, J. Mater. Chem. A 2020, 8, 3785.

29
H. Park, R. K. Bera, R. Ryoo, Adv. Energy Sustainability Res. 2021, 2, 2100076.

30
X. Li, M. Li, Z. Huang, G. Liang, Z. Chen, Q. Yang, Q. Huang, C. Zhi, Energy Environ. Sci. 2021, 14, 407.

31
R. C. Teitelbaum, S. L. Ruby, T. J. Marks, J. Am. Chem. Soc. 1980, 102, 3322.

32
R. E. Rundle, R. R. Baldwin, J. Am. Chem. Soc. 1943, 65, 554.

33
F. Wang, J. Tseng, Z. Liu, P. Zhang, G. Wang, G. Chen, W. Wu, M. Yu, Y. Wu, X. Feng, Adv. Mater. 2020, 32, 2000287.

34
S. Zhang, J. Hao, H. Li, P. Zhang, Z. Yin, Y. Li, B. Zhang, Z. Lin, S. Qiao, Adv. Mater. 2022, 34, 2201716.

35
W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song, X.-X. Liu, X. Sun, Chem. Eng. J. 2022, 428, 131283.

36
G. Yasin, S. Ibrahim, S. Ibraheem, S. Ali, R. Iqbal, A. Kumar, M. Tabish, Y. Slimani, T. A. Nguyen, H. Xu, W. Zhao, J. Mater. Chem. A 2021, 9, 18222.

37
G. Yasin, M. Arif, J. Ma, S. Ibraheem, D. Yu, L. Zhang, D. Liu, L. Dai, Inorg. Chem. Front. 2022, 9, 1058.

38
C. Xie, Y. Liu, W. Lu, H. Zhang, X. Li, Energy Environ. Sci. 2019, 12, 1834.

39
J. Yang, Y. Song, Q. Liu, A. Tang, J. Mater. Chem. A 2021, 9, 16093.

40
Z. Pei, Z. Zhu, D. Sun, J. Cai, A. Mosallanezhad, M. Chen, G. Wang, Mater. Res. Bull. 2021, 141, 111347.

41
Q. Zhang, Z. Wu, F. Liu, S. Liu, J. Liu, Y. Wang, T. Yan, J. Mater. Chem. A 2017, 5, 15235.

42
H. Tian, S. Zhang, Z. Meng, W. He, W.-Q. Han, ACS Energy Lett. 2017, 2, 1170.

43
I. Sifuentes-Nieves, G. Velazquez, P. C. Flores-Silva, E. Hernández-Hernández, G. Neira-Velázquez, C. Gallardo-Vega, G. Mendez-Montealvo, Int. J. Biol. Macromol. 2020, 144, 682.

44
S. Lv, Y. Zhang, J. Gu, H. Tan, Int. J. Biol. Macromol. 2018, 113, 338.

45
S.-W. Hou, W. Wei, Y. Wang, J.-H. Gan, Y. Lu, N.-P. Tao, X.-C. Wang, Y. Liu, C.-H. Xu, Spectrochim. Acta A 2019,

DOI

46
D. Kalita, N. Kaushik, C. L. Mahanta, J. Food Sci. Tech. 2014, 51, 2790.

47
D. Zhao, Q. Zhu, X. Li, M. Dun, Y. Wang, X. Huang, Batteries Supercaps 2022, 5, e202100341.

48
Q. Zhu, Q. Xiao, B. Zhang, Z. Yan, X. Liu, S. Chen, Z. Ren, Y. Yu, J. Mater. Chem. A 2020, 8, 10761.

49
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Nano Energy 2019, 62, 550.

Options
Outlines

/