Enhancing I0/I- Conversion Efficiency by Starch Confinement in Zinc-Iodine Battery

Danyang Zhao, Qiancheng Zhu, Qiancheng Zhou, Wenming Zhang, Ying Yu, Shuo Chen, Zhifeng Ren

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12522. DOI: 10.1002/eem2.12522
RESEARCH ARTICLE

Enhancing I0/I- Conversion Efficiency by Starch Confinement in Zinc-Iodine Battery

Author information +
History +

Abstract

The redox couple of I0/I- in aqueous rechargeable iodine-zinc (I2-Zn) batteries is a promising energy storage resource since it is safe and cost-effective, and provides steady output voltage. However, the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide (I3- and I5-) and side reactions on the Zn anode. Starch is a very low-cost and widely sourced food used daily around the world. “Starch turns blue when it encounters iodine” is a classic chemical reaction, which results from the unique structure of the helix starch molecule-iodine complex. Inspired by this, we employ starch to confine the shuttling of polyiodide, and thus, the I0/I- conversion efficiency of an I2-Zn battery is clearly enhanced. According to the detailed characterizations and theoretical DFT calculation results, the enhancement of I0/I- conversion efficiency is mainly originated from the strong bonding between the charged products of I3- and I5- and the rich hydroxyl groups in starch. This work provides inspiration for the rational design of high-performance and low-cost I2-Zn in AZIBs.

Keywords

aqueous battery / conversion efficiency / iodine-zinc battery / starch confinement

Cite this article

Download citation ▾
Danyang Zhao, Qiancheng Zhu, Qiancheng Zhou, Wenming Zhang, Ying Yu, Shuo Chen, Zhifeng Ren. Enhancing I0/I- Conversion Efficiency by Starch Confinement in Zinc-Iodine Battery. Energy & Environmental Materials, 2024, 7(1): 12522 https://doi.org/10.1002/eem2.12522

References

[1]
J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.
[2]
B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.
[3]
H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He, H. Zhou, Adv. Mater. 2020, 32, 2004240.
[4]
Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K. A. Owusu, L. Mai, Y. Yu, Adv. Energy Mater. 2019, 9, 1901081.
[5]
G. Yasin, M. Arif, T. Mehtab, X. Lu, D. Yu, N. Muhammad, M. T. Nazir, H. Song, Energy Storage Mater. 2020, 25, 644.
[6]
H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu, X. He, Energy Storage Mater. 2020, 33, 188.
[7]
W. Ling, F. Mo, J. Q. Wang, Q. J. Liu, Y. Liu, Q. X. Yang, Y. J. Qiu, Y. Huang, Mater. Today Phys. 2021, 20, 100458.
[8]
Y. Q. Jiang, K. Ma, M. L. Sun, Y. Y. Li, J. P. Liu, Energy Environ. Mater. 2022,
CrossRef Google scholar
[9]
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, S.-Z. Qiao, Sci Adv 2020, 6, eaba4098.
[10]
Q. Zhu, M. Cheng, B. Zhang, K. Jin, S. Chen, Z. Ren, Y. Yu, Adv. Funct. Mater. 2019, 29, 1905979.
[11]
Y. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 2020, 5, 646.
[12]
Q. Zhu, L. Yu, S. Song, D. Wang, D. Zhao, J. Zhou, Y. Yu, S. Chen, Z. Ren, Mater. Today Phys. 2021, 19, 100425.
[13]
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 2020, 49, 4203.
[14]
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 2019, 4, 495.
[15]
C. Huang, Q. Wang, G. Tian, D. Zhang, Mater. Today Phys. 2021, 21, 100518.
[16]
L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li, H. Huang, C. Zhi, Angew. Chem. Int. Ed. 2021, 60, 3791.
[17]
H. Tian, T. Gao, X. Li, X. Wang, C. Luo, X. Fan, C. Yang, L. Suo, Z. Ma, W. Han, C. Wang, Nat. Commun. 2017, 8, 14083.
[18]
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi, X. Zhou, Z. Li, L. Gao, L. Zhang, X. Liang, Nat. Commun. 2021, 12, 170.
[19]
C. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lü, C.-J. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Y. Wang, O. Borodin, Y. Ren, K. Xu, C. Wang, Nature 2019, 569, 245.
[20]
C. Sun, X. Shi, Y. Zhang, J. Liang, J. Qu, C. Lai, ACS Nano 2020, 14, 1176.
[21]
H. Tang, W. Li, L. Pan, K. Tu, F. Du, T. Qiu, J. Yang, C. P. Cullen, N. McEvoy, C. Zhang, Adv. Funct. Mater. 2019, 29, 1901907.
[22]
X. Li, N. Li, Z. Huang, Z. Chen, G. Liang, Q. Yang, M. Li, Y. Zhao, L. Ma, B. Dong, Q. Huang, J. Fan, C. Zhi, Adv. Mater. 2021, 33, 2006897.
[23]
H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao, G. Li, X. S. Li, K. S. Han, K. T. Mueller, V. Sprenkle, J. Liu, ACS Energy Lett. 2017, 2, 2674.
[24]
K. K. Sonigara, J. Zhao, H. K. Machhi, G. Cui, S. S. Soni, Adv. Energy Mater. 2020, 10, 2001997.
[25]
D. Yu, A. Kumar, T. A. Nguyen, M. T. Nazir, G. Yasin, ACS Sustainable Chem. Eng. 2020, 8, 13769.
[26]
X. Li, T. Gao, F. Han, Z. Ma, X. Fan, S. Hou, N. Eidson, W. Li, C. Wang, Adv. Energy Mater. 2018, 8, 1701728.
[27]
J. J. Hong, L. Zhu, C. Chen, L. Tang, H. Jiang, B. Jin, T. C. Gallagher, Q. Guo, C. Fang, X. Ji, Angew. Chem. Int. Ed. 2019, 131, 16057.
[28]
W. Li, K. Wang, K. Jiang, J. Mater. Chem. A 2020, 8, 3785.
[29]
H. Park, R. K. Bera, R. Ryoo, Adv. Energy Sustainability Res. 2021, 2, 2100076.
[30]
X. Li, M. Li, Z. Huang, G. Liang, Z. Chen, Q. Yang, Q. Huang, C. Zhi, Energy Environ. Sci. 2021, 14, 407.
[31]
R. C. Teitelbaum, S. L. Ruby, T. J. Marks, J. Am. Chem. Soc. 1980, 102, 3322.
[32]
R. E. Rundle, R. R. Baldwin, J. Am. Chem. Soc. 1943, 65, 554.
[33]
F. Wang, J. Tseng, Z. Liu, P. Zhang, G. Wang, G. Chen, W. Wu, M. Yu, Y. Wu, X. Feng, Adv. Mater. 2020, 32, 2000287.
[34]
S. Zhang, J. Hao, H. Li, P. Zhang, Z. Yin, Y. Li, B. Zhang, Z. Lin, S. Qiao, Adv. Mater. 2022, 34, 2201716.
[35]
W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song, X.-X. Liu, X. Sun, Chem. Eng. J. 2022, 428, 131283.
[36]
G. Yasin, S. Ibrahim, S. Ibraheem, S. Ali, R. Iqbal, A. Kumar, M. Tabish, Y. Slimani, T. A. Nguyen, H. Xu, W. Zhao, J. Mater. Chem. A 2021, 9, 18222.
[37]
G. Yasin, M. Arif, J. Ma, S. Ibraheem, D. Yu, L. Zhang, D. Liu, L. Dai, Inorg. Chem. Front. 2022, 9, 1058.
[38]
C. Xie, Y. Liu, W. Lu, H. Zhang, X. Li, Energy Environ. Sci. 2019, 12, 1834.
[39]
J. Yang, Y. Song, Q. Liu, A. Tang, J. Mater. Chem. A 2021, 9, 16093.
[40]
Z. Pei, Z. Zhu, D. Sun, J. Cai, A. Mosallanezhad, M. Chen, G. Wang, Mater. Res. Bull. 2021, 141, 111347.
[41]
Q. Zhang, Z. Wu, F. Liu, S. Liu, J. Liu, Y. Wang, T. Yan, J. Mater. Chem. A 2017, 5, 15235.
[42]
H. Tian, S. Zhang, Z. Meng, W. He, W.-Q. Han, ACS Energy Lett. 2017, 2, 1170.
[43]
I. Sifuentes-Nieves, G. Velazquez, P. C. Flores-Silva, E. Hernández-Hernández, G. Neira-Velázquez, C. Gallardo-Vega, G. Mendez-Montealvo, Int. J. Biol. Macromol. 2020, 144, 682.
[44]
S. Lv, Y. Zhang, J. Gu, H. Tan, Int. J. Biol. Macromol. 2018, 113, 338.
[45]
S.-W. Hou, W. Wei, Y. Wang, J.-H. Gan, Y. Lu, N.-P. Tao, X.-C. Wang, Y. Liu, C.-H. Xu, Spectrochim. Acta A 2019,
CrossRef Google scholar
[46]
D. Kalita, N. Kaushik, C. L. Mahanta, J. Food Sci. Tech. 2014, 51, 2790.
[47]
D. Zhao, Q. Zhu, X. Li, M. Dun, Y. Wang, X. Huang, Batteries Supercaps 2022, 5, e202100341.
[48]
Q. Zhu, Q. Xiao, B. Zhang, Z. Yan, X. Liu, S. Chen, Z. Ren, Y. Yu, J. Mater. Chem. A 2020, 8, 10761.
[49]
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Nano Energy 2019, 62, 550.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/