A Single-Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates

  • Yuanpeng Ji 1,2 ,
  • Botao Yuan 1 ,
  • Jiawei Zhang 1 ,
  • Zhezhi Liu 3 ,
  • Shijie Zhong 1 ,
  • Jipeng Liu 2 ,
  • Yuanpeng Liu 1 ,
  • Mengqiu Yang 2 ,
  • Changguo Wang 1 ,
  • Chunhui Yang 2,4 ,
  • Jiecai Han 1 ,
  • Weidong He , 1,5,6
Expand
  • 1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
  • 2. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
  • 3. School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
  • 4. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150080, China
  • 5. Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401151, China
  • 6. School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
weidong.he@hit.edu.cn

Received date: 31 May 2022

Revised date: 08 Aug 2022

Copyright

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth, but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed. Herein, by combining PVDF-HFP and ferroelectric BaTiO3, we develop a homogeneous, single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength. As squeezed by local protrusion, the polarized PVDF-HFP/BaTiO3 composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion, hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator, especially at high rates. Remarkably, the homogeneous incorporation of BaTiO3 highly improves the piezoelectric performances of the separator with residual polarization of 0.086 μC cm-2 after polarization treatment, four times that of the pure PVDF-HFP separator, and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57. Beneficial from the prominent piezoelectric mechanism, the polarized PVDF-HFP/BaTiO3 composite separator enables stable cyclic performances of Li||LiFePO4 cells for 400 cycles at 2 C (1 C = 170 mA g-1) with a capacity retention above 99%, and for 600 cycles at 5 C with a capacity retention over 85%.

Cite this article

Yuanpeng Ji , Botao Yuan , Jiawei Zhang , Zhezhi Liu , Shijie Zhong , Jipeng Liu , Yuanpeng Liu , Mengqiu Yang , Changguo Wang , Chunhui Yang , Jiecai Han , Weidong He . A Single-Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates[J]. Energy & Environmental Materials, 2024 , 7(1) : 12510 . DOI: 10.1002/eem2.12510

1
B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

2
B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691.

3
J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180.

4
X. Zhang, Y. Yang, Z. Zhou, Chem. Soc. Rev. 2020, 49, 3040.

5
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 2017, 358, 506.

6
P. Zou, Y. Sui, H. Zhan, C. Wang, H. L. Xin, H.-M. Cheng, F. Kang, C. Yang, Chem. Rev. 2021, 121, 5986.

7
H. Gan, R. Wang, J. Wu, H. Chen, R. Li, H. Liu, ACS Appl. Mater. Interfaces 2021, 13, 37162.

8
C. Chen, S. Li, P. H. L. Notten, Y. Zhang, Q. Hao, X. Zhang, W. Lei, ACS Appl. Mater. Interfaces 2021, 13, 24785.

9
S. Xia, Y. Zhao, J. Yan, J. Yu, B. Ding, ACS Nano 2021, 15, 3161.

10
K. Zhang, F. Wu, K. Zhang, S. Weng, X. Wang, M. Gao, Y. Sun, D. Cao, Y. Bai, H. Xu, X. Wang, C. Wu, Energy Storage Mater. 2021, 41, 485.

11
Y. Guo, R. Wang, C. Cui, R. Xiong, Y. Wei, T. Zhai, H. Li, Nano Lett. 2020, 20, 7680.

12
C. M. Efaw, B. Lu, Y. Lin, G. M. Pawar, P. R. Chinnam, M. F. Hurley, E. J. Dufek, Y. S. Meng, B. Li, Mater. Today 2021, 49, 48.

13
J. Zhao, Y. Tang, Q. Dai, C. Du, Y. Zhang, D. Xue, T. Chen, J. Chen, B. Wang, J. Yao, N. Zhao, Y. Li, S. Xia, X. Guo, S. J. Harris, L. Zhang, S. Zhang, T. Zhu, J. Huang, Energy Environ. Mater. 2022, 5, 524.

14
J. Liu, H. Yuan, H. Liu, C.-Z. Zhao, Y. Lu, X.-B. Cheng, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2021, 12, 2100748.

15
Z. Hong, V. Viswanathan, ACS Energy Lett. 2018, 3, 1737.

16
P. Arora, Z. Zhang, Chem. Rev. 2004, 104, 4419.

17
B. Boateng, X. Zhang, C. Zhen, D. Chen, Y. Han, C. Feng, N. Chen, W. He, Nano Select 2021, 2, 993.

18
Q. Zhang, Z. Liu, K. Wang, J. Zhai, Adv. Funct. Mater. 2015, 25, 2091.

19
Y.-K. Ahn, J. Park, D. Shin, S. Cho, S. Y. Park, H. Kim, Y. Piao, J. Yoo, Y. S. Kim, J. Mater. Chem. A 2015, 3, 10715.

20
G. Liu, D. Wang, J. Zhang, A. Kim, W. Lu, ACS Mater. Lett. 2019, 1, 498.

21
T. Gao, C. Rainey, W. Lu, ACS Appl. Mater. Interfaces 2020, 12, 51448.

22
C. Li, S. Liu, C. Shi, G. Liang, Z. Lu, R. Fu, D. Wu, Nat. Commun. 2019, 10, (1), 1363.

23
J. Zhi, S. Li, M. Han, P. Chen, Sci. Adv. 2020, 6, eabb1342.

24
M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, J. Rödel, Appl. Phys. Rev. 2017, 4, 041305.

25
T. Yim, S. H. Han, N. H. Park, M.-S. Park, J. H. Lee, J. Shin, J. W. Choi, Y. Jung, Y. N. Jo, J.-S. Yu, K. J. Kim, Adv. Funct. Mater. 2016, 26, 7817.

26
M. Li, H. J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P. W. M. Blom, D. M. de Leeuw, Nat. Mater. 2013, 12, 433.

27
M. H. A. Mhareb, Y. Slimani, Y. S. Alajerami, M. I. Sayyed, E. Lacomme, M. A. Almessiere, Ceram. Int. 2020, 46, 28877.

28
J. Luo, C.-C. Fang, N.-L. Wu, Adv. Energy Mater. 2018, 8, 1701482.

29
A. L. Ahmad, U. R. Farooqui, N. A. Hamid, Polymer 2018, 142, 330.

30
T. M. W. J. Bandara, A. M. J. S. Weerasinghe, M. A. K. L. Dissanayake, G. K. R. Senadeera, M. Furlani, I. Albinsson, B. E. Mellander, Electrochim. Acta 2018, 266, 276.

31
L. Chen, W. Li, L.-Z. Fan, C.-W. Nan, Q. Zhang, Adv. Funct. Mater. 2019, 29, 1901047.

32
K. M. Diederichsen, E. J. McShane, B. D. McCloskey, ACS Energy Lett. 2017, 2, 2563.

33
M. Rosso, C. Brissot, A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, R. Bouchet, S. Lascaud, Electrochim. Acta 2006, 51, 5334.

34
Q. Wang, Z. Yao, C. Zhao, T. Verhallen, D. P. Tabor, M. Liu, F. Ooms, F. Kang, A. Aspuru-Guzik, Y.-S. Hu, M. Wagemaker, B. Li, Nat. Commun. 2020, 11, 4188.

35
X. Cao, X. Ren, L. Zou, M. H. Engelhard, W. Huang, H. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy 2019, 4, 796.

36
H. Zheng, H. Xiang, F. Jiang, Y. Liu, Y. Sun, X. Liang, Y. Feng, Y. Yu, Adv. Energy Mater. 2020, 10, 2001440.

Options
Outlines

/