A Single-Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates

Yuanpeng Ji, Botao Yuan, Jiawei Zhang, Zhezhi Liu, Shijie Zhong, Jipeng Liu, Yuanpeng Liu, Mengqiu Yang, Changguo Wang, Chunhui Yang, Jiecai Han, Weidong He

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12510. DOI: 10.1002/eem2.12510
RESEARCH ARTICLE

A Single-Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates

Author information +
History +

Abstract

Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth, but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed. Herein, by combining PVDF-HFP and ferroelectric BaTiO3, we develop a homogeneous, single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength. As squeezed by local protrusion, the polarized PVDF-HFP/BaTiO3 composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion, hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator, especially at high rates. Remarkably, the homogeneous incorporation of BaTiO3 highly improves the piezoelectric performances of the separator with residual polarization of 0.086 μC cm-2 after polarization treatment, four times that of the pure PVDF-HFP separator, and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57. Beneficial from the prominent piezoelectric mechanism, the polarized PVDF-HFP/BaTiO3 composite separator enables stable cyclic performances of Li||LiFePO4 cells for 400 cycles at 2 C (1 C = 170 mA g-1) with a capacity retention above 99%, and for 600 cycles at 5 C with a capacity retention over 85%.

Keywords

composite separator / Li metal anodes / piezoelectric materials / PVDF-HFP / uniform Li deposition

Cite this article

Download citation ▾
Yuanpeng Ji, Botao Yuan, Jiawei Zhang, Zhezhi Liu, Shijie Zhong, Jipeng Liu, Yuanpeng Liu, Mengqiu Yang, Changguo Wang, Chunhui Yang, Jiecai Han, Weidong He. A Single-Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates. Energy & Environmental Materials, 2024, 7(1): 12510 https://doi.org/10.1002/eem2.12510

References

[1]
B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.
[2]
B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691.
[3]
J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180.
[4]
X. Zhang, Y. Yang, Z. Zhou, Chem. Soc. Rev. 2020, 49, 3040.
[5]
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 2017, 358, 506.
[6]
P. Zou, Y. Sui, H. Zhan, C. Wang, H. L. Xin, H.-M. Cheng, F. Kang, C. Yang, Chem. Rev. 2021, 121, 5986.
[7]
H. Gan, R. Wang, J. Wu, H. Chen, R. Li, H. Liu, ACS Appl. Mater. Interfaces 2021, 13, 37162.
[8]
C. Chen, S. Li, P. H. L. Notten, Y. Zhang, Q. Hao, X. Zhang, W. Lei, ACS Appl. Mater. Interfaces 2021, 13, 24785.
[9]
S. Xia, Y. Zhao, J. Yan, J. Yu, B. Ding, ACS Nano 2021, 15, 3161.
[10]
K. Zhang, F. Wu, K. Zhang, S. Weng, X. Wang, M. Gao, Y. Sun, D. Cao, Y. Bai, H. Xu, X. Wang, C. Wu, Energy Storage Mater. 2021, 41, 485.
[11]
Y. Guo, R. Wang, C. Cui, R. Xiong, Y. Wei, T. Zhai, H. Li, Nano Lett. 2020, 20, 7680.
[12]
C. M. Efaw, B. Lu, Y. Lin, G. M. Pawar, P. R. Chinnam, M. F. Hurley, E. J. Dufek, Y. S. Meng, B. Li, Mater. Today 2021, 49, 48.
[13]
J. Zhao, Y. Tang, Q. Dai, C. Du, Y. Zhang, D. Xue, T. Chen, J. Chen, B. Wang, J. Yao, N. Zhao, Y. Li, S. Xia, X. Guo, S. J. Harris, L. Zhang, S. Zhang, T. Zhu, J. Huang, Energy Environ. Mater. 2022, 5, 524.
[14]
J. Liu, H. Yuan, H. Liu, C.-Z. Zhao, Y. Lu, X.-B. Cheng, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2021, 12, 2100748.
[15]
Z. Hong, V. Viswanathan, ACS Energy Lett. 2018, 3, 1737.
[16]
P. Arora, Z. Zhang, Chem. Rev. 2004, 104, 4419.
[17]
B. Boateng, X. Zhang, C. Zhen, D. Chen, Y. Han, C. Feng, N. Chen, W. He, Nano Select 2021, 2, 993.
[18]
Q. Zhang, Z. Liu, K. Wang, J. Zhai, Adv. Funct. Mater. 2015, 25, 2091.
[19]
Y.-K. Ahn, J. Park, D. Shin, S. Cho, S. Y. Park, H. Kim, Y. Piao, J. Yoo, Y. S. Kim, J. Mater. Chem. A 2015, 3, 10715.
[20]
G. Liu, D. Wang, J. Zhang, A. Kim, W. Lu, ACS Mater. Lett. 2019, 1, 498.
[21]
T. Gao, C. Rainey, W. Lu, ACS Appl. Mater. Interfaces 2020, 12, 51448.
[22]
C. Li, S. Liu, C. Shi, G. Liang, Z. Lu, R. Fu, D. Wu, Nat. Commun. 2019, 10, (1), 1363.
[23]
J. Zhi, S. Li, M. Han, P. Chen, Sci. Adv. 2020, 6, eabb1342.
[24]
M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, J. Rödel, Appl. Phys. Rev. 2017, 4, 041305.
[25]
T. Yim, S. H. Han, N. H. Park, M.-S. Park, J. H. Lee, J. Shin, J. W. Choi, Y. Jung, Y. N. Jo, J.-S. Yu, K. J. Kim, Adv. Funct. Mater. 2016, 26, 7817.
[26]
M. Li, H. J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P. W. M. Blom, D. M. de Leeuw, Nat. Mater. 2013, 12, 433.
[27]
M. H. A. Mhareb, Y. Slimani, Y. S. Alajerami, M. I. Sayyed, E. Lacomme, M. A. Almessiere, Ceram. Int. 2020, 46, 28877.
[28]
J. Luo, C.-C. Fang, N.-L. Wu, Adv. Energy Mater. 2018, 8, 1701482.
[29]
A. L. Ahmad, U. R. Farooqui, N. A. Hamid, Polymer 2018, 142, 330.
[30]
T. M. W. J. Bandara, A. M. J. S. Weerasinghe, M. A. K. L. Dissanayake, G. K. R. Senadeera, M. Furlani, I. Albinsson, B. E. Mellander, Electrochim. Acta 2018, 266, 276.
[31]
L. Chen, W. Li, L.-Z. Fan, C.-W. Nan, Q. Zhang, Adv. Funct. Mater. 2019, 29, 1901047.
[32]
K. M. Diederichsen, E. J. McShane, B. D. McCloskey, ACS Energy Lett. 2017, 2, 2563.
[33]
M. Rosso, C. Brissot, A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, R. Bouchet, S. Lascaud, Electrochim. Acta 2006, 51, 5334.
[34]
Q. Wang, Z. Yao, C. Zhao, T. Verhallen, D. P. Tabor, M. Liu, F. Ooms, F. Kang, A. Aspuru-Guzik, Y.-S. Hu, M. Wagemaker, B. Li, Nat. Commun. 2020, 11, 4188.
[35]
X. Cao, X. Ren, L. Zou, M. H. Engelhard, W. Huang, H. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy 2019, 4, 796.
[36]
H. Zheng, H. Xiang, F. Jiang, Y. Liu, Y. Sun, X. Liang, Y. Feng, Y. Yu, Adv. Energy Mater. 2020, 10, 2001440.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/