In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries

  • Fuhe Wang 1,2 ,
  • Honghao Liu 2 ,
  • Yaqing Guo 2 ,
  • Qigao Han 2 ,
  • Ping Lou 3 ,
  • Long Li 3 ,
  • Jianjie Jiang 4 ,
  • Shijie Cheng 2 ,
  • Yuancheng Cao , 2
Expand
  • 1. School of Materials Science and Engineering, Huazhong University Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3. State Grid Huzhou Power Supply Company, Huzhou 313000, China
  • 4. Huzhou Electric Power Design Institute Company, Huzhou 311404, China
yccao@hust.edu.cn

Received date: 12 May 2022

Revised date: 04 Jul 2022

Copyright

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage. However, the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries. Here, a tri-monomer copolymerized gel polymer electrolyte (TGPE) with a cross-linked reticulation structure was prepared by introducing a cross-linker (polyurethane group) into the acrylate-based in situ polymerization system. The soft segment of polyurethane in TGPE enables the far migration of lithium ions, and the -NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework. This system hinders anion migration and leads to a high Li+ migration number ( t Li+= 0.65), which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth. As a result, the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm-2. The LFP¦¦TGPE¦¦Li cell has a capacity retention of 89.8% after cycling 800 times at a rate of 1C. In summary, in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.

Cite this article

Fuhe Wang , Honghao Liu , Yaqing Guo , Qigao Han , Ping Lou , Long Li , Jianjie Jiang , Shijie Cheng , Yuancheng Cao . In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries[J]. Energy & Environmental Materials, 2024 , 7(1) : 12497 . DOI: 10.1002/eem2.12497

1
X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang, H.-J. Peng, R. Zhang, S.-T. Yang, Q. Zhang, Chem 2017, 2, 258.

2
Y. Guo, H. Li, T. Zhai, Adv. Mater. 2017, 29, 1700007.

3
M. D. Tikekar, S. Choudhury, Z. Tu, L. A. Archer, Nat. Energy 2016,

DOI

4
Y. Chen, Y. Luo, H. Zhang, C. Qu, H. Zhang, X. Li, Small Methods 2019, 3, 1800551.

5
K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, N. P. Balsara, Nat. Mater. 2014, 13, 69.

6
B. Liu, J.-G. Zhang, W. Xu, Joule 2018, 2, 833.

7
Y. Chen, Y. Mao, X. Hao, Y. Cao, W. Wang, ChemElectroChem 2021, 8, 1500.

8
D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.

9
M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.

10
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.

11
X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.

12
T. Li, H. Liu, P. Shi, Q. Zhang, Rare Metals 2018, 37, 449.

13
W. Liu, R. Guo, B. Zhan, B. Shi, Y. Li, H. Pei, Y. Wang, W. Shi, Z. Fu, J. Xie, ACS Appl. Energy Mater. 2018, 1, 1674.

14
H. Ye, Z. J. Zheng, H. R. Yao, S. C. Liu, T. T. Zuo, X. W. Wu, Y. X. Yin, N. W. Li, J. J. Gu, F. F. Cao, Angew. Chem. 2019, 131, 1106.

15
Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng, S. Liu, W. K. Pang, Y. B. He, Z. Guo, Adv. Mater. 2021, 33, 2008133.

16
W. Ren, C. Ding, X. Fu, Y. Huang, Energy Storage Mater. 2021, 34, 515.

17
Y. G. Cho, C. Hwang, D. S. Cheong, Y. S. Kim, H. K. Song, Adv. Mater. 2019, 31, 1804909.

18
J. Kalhoff, G. G. Eshetu, D. Bresser, S. Passerini, ChemSusChem 2015, 8, 2154.

19
J. Zheng, M. Tang, Y. Y. Hu, Angew. Chem. 2016, 128, 12726.

20
K. He, S. H. S. Cheng, J. Hu, Y. Zhang, H. Yang, Y. Liu, W. Liao, D. Chen, C. Liao, X. Cheng, Angew. Chem. 2021, 133, 12223.

21
X. Chen, W. He, L.-X. Ding, S. Wang, H. Wang, Energy Environ. Sci. 2019, 12, 938.

22
Z. Hu, G. Li, A. Wang, J. Luo, X. Liu, Batter. Supercaps 2020, 3, 331.

23
Q. Lu, Y. B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, Q. H. Yang, Adv. Mater. 2017, 29, 1604460.

24
W. Li, Y. Pang, J. Liu, G. Liu, Y. Wang, Y. Xia, RSC Adv. 2017, 7, 23494.

25
H. Li, X.-T. Ma, J.-L. Shi, Z.-K. Yao, B.-K. Zhu, L.-P. Zhu, Electrochim. Acta 2011, 56, 2641.

26
Y. Saito, C. Capiglia, H. Kataoka, H. Yamamoto, H. Ishikawa, P. Mustarelli, Solid State Ion. 2000, 136, 1161.

27
S. Gao, K. Wang, R. Wang, M. Jiang, J. Han, T. Gu, S. Cheng, K. Jiang, J. Mater. Chem. A 2017, 5, 17889.

28
D. Yang, L. He, Y. Liu, W. Yan, S. Liang, Y. Zhu, L. Fu, Y. Chen, Y. Wu, J. Mater. Chem. A 2019, 7, 13679.

29
A. Hosseinioun, P. Nürnberg, M. Schönhoff, D. Diddens, E. Paillard, RSC Adv. 2019, 9, 27574.

30
K. H. Choi, S. J. Cho, S. H. Kim, Y. H. Kwon, J. Y. Kim, S. Y. Lee, Adv. Funct. Mater. 2014, 24, 44.

31
I. Osada, H. de Vries, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed. 2016, 55, 500.

32
F. Ye, S. Chen, G. Tang, M. Ma, X. Wang, Colloids Surf. A Physicochem. Eng. Asp. 2015,

DOI

33
W. Dong, X.-X. Zeng, X.-D. Zhang, J.-Y. Li, J.-L. Shi, Y. Xiao, Y. Shi, R. Wen, Y.-X. Yin, T.-s. Wang, ACS Appl. Mater. Interfaces 2018, 10, 18005.

34
J. Chai, Z. Liu, J. Ma, J. Wang, X. Liu, H. Liu, J. Zhang, G. Cui, L. Chen, Adv. Sci. 2017, 4, 1600377.

35
Y. Wang, J. Qiu, J. Peng, J. Li, M. Zhai, J. Mater. Chem. A 2017, 5, 12393.

36
Y. Zhang, J. Qian, W. Xu, S. M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M. H. Engelhard, D. Mei, R. Cao, Nano Lett. 2014, 14, 6889.

37
F. Ding, W. Xu, X. Chen, J. Zhang, Y. Shao, M. H. Engelhard, Y. Zhang, T. A. Blake, G. L. Graff, X. Liu, J. Phys. Chem. C 2014, 118, 4043.

38
A. L. Michan, B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey, B. L. Lucht, Chem. Mater. 2016, 28, 8149.

39
T. Liu, J. Zhang, W. Han, J. Zhang, G. Ding, S. Dong, G. Cui, J. Electrochem. Soc. 2020, 167, 070527.

40
J. Shim, H. J. Kim, B. G. Kim, Y. S. Kim, D.-G. Kim, J.-C. Lee, Energy Environ. Sci. 1911, 2017, 10.

41
M. Zhu, J. Wu, W. H. Zhong, J. Lan, G. Sui, X. Yang, Adv. Energy Mater. 2018, 8, 1702561.

42
Z. Lv, Y. Tang, S. Dong, Q. Zhou, G. Cui, Chem. Eng. J. 2022, 430, 132659.

43
V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J. R. Nair, Energy Environ. Sci. 2021, 14, 2708.

44
Z. Xiong, L. Lan, Y. Wang, C. Lu, S. Qin, S. Chen, L. Zhou, C. Zhu, S. Li, L. Meng, ACS Energy Lett. 2021, 6, 3824.

45
Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang, Q. Xiang, W. Chen, C. Liu, J. Luo, S. Yang, Adv. Energy Mater. 2020, 10, 1903534.

46
S.-S. Yoon, J.-H. Kim, S.-C. Kim, Polym. Bull. (Berl.) 2005, 53, 339.

47
M. Abdelrehim, H. Komber, J. Langenwalter, B. Voit, B. Bruchmann, J. Polym. Sci. A Polym. Chem. 2004, 42, 3062.

48
J. Wu, X. Wang, Q. Liu, S. Wang, D. Zhou, F. Kang, D. Shanmukaraj, M. Armand, T. Rojo, B. Li, Nat. Commun. 2021,

DOI

49
Q. Zhao, X. Liu, J. Zheng, Y. Deng, A. Warren, Q. Zhang, L. Archer, Proc. Natl. Acad. Sci. USA 2020, 117, 26053.

50
H. Li, Y. Du, X. Wu, J. Xie, F. Lian, Adv. Funct. Mater. 2021, 31, 2103049.

51
J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, J. Liu, T. Osaka, R. Sugiura, B. Wu, Nat. Energy 2020, 5, 561.

52
Y. Guo, X. Liao, P. Huang, P. Lou, Y. Su, X. Hong, Q. Han, R. Yu, Y.-C. Cao, S. Chen, Energy Storage Mater. 2021, 43, 348.

53
F. Ye, X. Zhang, K. Liao, Q. Lu, X. Zou, R. Ran, W. Zhou, Y. Zhong, Z. Shao, J. Mater. Chem. A 2020, 8, 9733.

54
Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun, B. An, H. M. Cheng, F. Li, Adv. Energy Mater. 2020, 10, 1903843.

55
P. Jaumaux, J. Wu, D. Shanmukaraj, Y. Wang, D. Zhou, B. Sun, F. Kang, B. Li, M. Armand, G. Wang, Adv. Funct. Mater. 2021, 31, 2008644.

56
B. D. Adams, J. Zheng, X. Ren, W. Xu, J. G. Zhang, Adv. Energy Mater. 2018, 8, 1702097.

Options
Outlines

/