In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries
Fuhe Wang, Honghao Liu, Yaqing Guo, Qigao Han, Ping Lou, Long Li, Jianjie Jiang, Shijie Cheng, Yuancheng Cao
In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries
Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage. However, the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries. Here, a tri-monomer copolymerized gel polymer electrolyte (TGPE) with a cross-linked reticulation structure was prepared by introducing a cross-linker (polyurethane group) into the acrylate-based in situ polymerization system. The soft segment of polyurethane in TGPE enables the far migration of lithium ions, and the -NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework. This system hinders anion migration and leads to a high Li+ migration number (= 0.65), which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth. As a result, the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm-2. The LFP¦¦TGPE¦¦Li cell has a capacity retention of 89.8% after cycling 800 times at a rate of 1C. In summary, in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.
gel polymer electrolytes / hydrogen bonds / in situ polymerization / lithium metal batteries / polyurethane
[1] |
X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang, H.-J. Peng, R. Zhang, S.-T. Yang, Q. Zhang, Chem 2017, 2, 258.
|
[2] |
Y. Guo, H. Li, T. Zhai, Adv. Mater. 2017, 29, 1700007.
|
[3] |
M. D. Tikekar, S. Choudhury, Z. Tu, L. A. Archer, Nat. Energy 2016,
CrossRef
Google scholar
|
[4] |
Y. Chen, Y. Luo, H. Zhang, C. Qu, H. Zhang, X. Li, Small Methods 2019, 3, 1800551.
|
[5] |
K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, N. P. Balsara, Nat. Mater. 2014, 13, 69.
|
[6] |
B. Liu, J.-G. Zhang, W. Xu, Joule 2018, 2, 833.
|
[7] |
Y. Chen, Y. Mao, X. Hao, Y. Cao, W. Wang, ChemElectroChem 2021, 8, 1500.
|
[8] |
D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.
|
[9] |
M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.
|
[10] |
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.
|
[11] |
X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.
|
[12] |
T. Li, H. Liu, P. Shi, Q. Zhang, Rare Metals 2018, 37, 449.
|
[13] |
W. Liu, R. Guo, B. Zhan, B. Shi, Y. Li, H. Pei, Y. Wang, W. Shi, Z. Fu, J. Xie, ACS Appl. Energy Mater. 2018, 1, 1674.
|
[14] |
H. Ye, Z. J. Zheng, H. R. Yao, S. C. Liu, T. T. Zuo, X. W. Wu, Y. X. Yin, N. W. Li, J. J. Gu, F. F. Cao, Angew. Chem. 2019, 131, 1106.
|
[15] |
Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng, S. Liu, W. K. Pang, Y. B. He, Z. Guo, Adv. Mater. 2021, 33, 2008133.
|
[16] |
W. Ren, C. Ding, X. Fu, Y. Huang, Energy Storage Mater. 2021, 34, 515.
|
[17] |
Y. G. Cho, C. Hwang, D. S. Cheong, Y. S. Kim, H. K. Song, Adv. Mater. 2019, 31, 1804909.
|
[18] |
J. Kalhoff, G. G. Eshetu, D. Bresser, S. Passerini, ChemSusChem 2015, 8, 2154.
|
[19] |
J. Zheng, M. Tang, Y. Y. Hu, Angew. Chem. 2016, 128, 12726.
|
[20] |
K. He, S. H. S. Cheng, J. Hu, Y. Zhang, H. Yang, Y. Liu, W. Liao, D. Chen, C. Liao, X. Cheng, Angew. Chem. 2021, 133, 12223.
|
[21] |
X. Chen, W. He, L.-X. Ding, S. Wang, H. Wang, Energy Environ. Sci. 2019, 12, 938.
|
[22] |
Z. Hu, G. Li, A. Wang, J. Luo, X. Liu, Batter. Supercaps 2020, 3, 331.
|
[23] |
Q. Lu, Y. B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, Q. H. Yang, Adv. Mater. 2017, 29, 1604460.
|
[24] |
W. Li, Y. Pang, J. Liu, G. Liu, Y. Wang, Y. Xia, RSC Adv. 2017, 7, 23494.
|
[25] |
H. Li, X.-T. Ma, J.-L. Shi, Z.-K. Yao, B.-K. Zhu, L.-P. Zhu, Electrochim. Acta 2011, 56, 2641.
|
[26] |
Y. Saito, C. Capiglia, H. Kataoka, H. Yamamoto, H. Ishikawa, P. Mustarelli, Solid State Ion. 2000, 136, 1161.
|
[27] |
S. Gao, K. Wang, R. Wang, M. Jiang, J. Han, T. Gu, S. Cheng, K. Jiang, J. Mater. Chem. A 2017, 5, 17889.
|
[28] |
D. Yang, L. He, Y. Liu, W. Yan, S. Liang, Y. Zhu, L. Fu, Y. Chen, Y. Wu, J. Mater. Chem. A 2019, 7, 13679.
|
[29] |
A. Hosseinioun, P. Nürnberg, M. Schönhoff, D. Diddens, E. Paillard, RSC Adv. 2019, 9, 27574.
|
[30] |
K. H. Choi, S. J. Cho, S. H. Kim, Y. H. Kwon, J. Y. Kim, S. Y. Lee, Adv. Funct. Mater. 2014, 24, 44.
|
[31] |
I. Osada, H. de Vries, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed. 2016, 55, 500.
|
[32] |
F. Ye, S. Chen, G. Tang, M. Ma, X. Wang, Colloids Surf. A Physicochem. Eng. Asp. 2015,
CrossRef
Google scholar
|
[33] |
W. Dong, X.-X. Zeng, X.-D. Zhang, J.-Y. Li, J.-L. Shi, Y. Xiao, Y. Shi, R. Wen, Y.-X. Yin, T.-s. Wang, ACS Appl. Mater. Interfaces 2018, 10, 18005.
|
[34] |
J. Chai, Z. Liu, J. Ma, J. Wang, X. Liu, H. Liu, J. Zhang, G. Cui, L. Chen, Adv. Sci. 2017, 4, 1600377.
|
[35] |
Y. Wang, J. Qiu, J. Peng, J. Li, M. Zhai, J. Mater. Chem. A 2017, 5, 12393.
|
[36] |
Y. Zhang, J. Qian, W. Xu, S. M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M. H. Engelhard, D. Mei, R. Cao, Nano Lett. 2014, 14, 6889.
|
[37] |
F. Ding, W. Xu, X. Chen, J. Zhang, Y. Shao, M. H. Engelhard, Y. Zhang, T. A. Blake, G. L. Graff, X. Liu, J. Phys. Chem. C 2014, 118, 4043.
|
[38] |
A. L. Michan, B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey, B. L. Lucht, Chem. Mater. 2016, 28, 8149.
|
[39] |
T. Liu, J. Zhang, W. Han, J. Zhang, G. Ding, S. Dong, G. Cui, J. Electrochem. Soc. 2020, 167, 070527.
|
[40] |
J. Shim, H. J. Kim, B. G. Kim, Y. S. Kim, D.-G. Kim, J.-C. Lee, Energy Environ. Sci. 1911, 2017, 10.
|
[41] |
M. Zhu, J. Wu, W. H. Zhong, J. Lan, G. Sui, X. Yang, Adv. Energy Mater. 2018, 8, 1702561.
|
[42] |
Z. Lv, Y. Tang, S. Dong, Q. Zhou, G. Cui, Chem. Eng. J. 2022, 430, 132659.
|
[43] |
V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J. R. Nair, Energy Environ. Sci. 2021, 14, 2708.
|
[44] |
Z. Xiong, L. Lan, Y. Wang, C. Lu, S. Qin, S. Chen, L. Zhou, C. Zhu, S. Li, L. Meng, ACS Energy Lett. 2021, 6, 3824.
|
[45] |
Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang, Q. Xiang, W. Chen, C. Liu, J. Luo, S. Yang, Adv. Energy Mater. 2020, 10, 1903534.
|
[46] |
S.-S. Yoon, J.-H. Kim, S.-C. Kim, Polym. Bull. (Berl.) 2005, 53, 339.
|
[47] |
M. Abdelrehim, H. Komber, J. Langenwalter, B. Voit, B. Bruchmann, J. Polym. Sci. A Polym. Chem. 2004, 42, 3062.
|
[48] |
J. Wu, X. Wang, Q. Liu, S. Wang, D. Zhou, F. Kang, D. Shanmukaraj, M. Armand, T. Rojo, B. Li, Nat. Commun. 2021,
CrossRef
Google scholar
|
[49] |
Q. Zhao, X. Liu, J. Zheng, Y. Deng, A. Warren, Q. Zhang, L. Archer, Proc. Natl. Acad. Sci. USA 2020, 117, 26053.
|
[50] |
H. Li, Y. Du, X. Wu, J. Xie, F. Lian, Adv. Funct. Mater. 2021, 31, 2103049.
|
[51] |
J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, J. Liu, T. Osaka, R. Sugiura, B. Wu, Nat. Energy 2020, 5, 561.
|
[52] |
Y. Guo, X. Liao, P. Huang, P. Lou, Y. Su, X. Hong, Q. Han, R. Yu, Y.-C. Cao, S. Chen, Energy Storage Mater. 2021, 43, 348.
|
[53] |
F. Ye, X. Zhang, K. Liao, Q. Lu, X. Zou, R. Ran, W. Zhou, Y. Zhong, Z. Shao, J. Mater. Chem. A 2020, 8, 9733.
|
[54] |
Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun, B. An, H. M. Cheng, F. Li, Adv. Energy Mater. 2020, 10, 1903843.
|
[55] |
P. Jaumaux, J. Wu, D. Shanmukaraj, Y. Wang, D. Zhou, B. Sun, F. Kang, B. Li, M. Armand, G. Wang, Adv. Funct. Mater. 2021, 31, 2008644.
|
[56] |
B. D. Adams, J. Zheng, X. Ren, W. Xu, J. G. Zhang, Adv. Energy Mater. 2018, 8, 1702097.
|
/
〈 | 〉 |