A Room-Temperature Chloride-Conducting Metal-Organic Crystal [Al(DMSO)6]Cl3 for Potential Solid-State Chloride-Shuttle Batteries
Bing Wu , Jan Luxa , Jiří Šturala , Shuangying Wei , Lukáš Děkanovský , Abhilash Karuthedath Parameswaran , Min Li , Zdenek Sofer
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12530
A Room-Temperature Chloride-Conducting Metal-Organic Crystal [Al(DMSO)6]Cl3 for Potential Solid-State Chloride-Shuttle Batteries
The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage, where the chloride ion batteries (CIBs) take over the role. The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte. On the flipside, its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl— conductivity. The present study reports [Al(DMSO)6]Cl3, a solid-state metal-organic material, allows chloride ion transfer. The strong Al-Cl bonds in AlCl3 are broken down after coordinating of Al3+ by ligand DMSO, and Cl— in the resulting compound is weakly bound to complexions [Al(DMSO)6]3+, which may facilitate Cl— migration. By partial replacement of Cl— with , the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172 × 10–5 S cm–1 to 2.012 × 10–4 S cm–1. When they are assembled with Ag (anode)/Ag-AgCl (cathode) electrode system, reversible electrochemical redox reactions occur on both sides, demonstrating its potential for solid-state chloride ion batteries. The strategy by weakening the bonding interaction using organic ligands between Cl— and central metallic ions may provide new ideas for developing solid chloride-ion conductors.
[Al(DMSO) 6]Cl 3 / chloride-ion batteries / ionic conductivity / metal-organic / solid-state electrolytes
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |