Bimetallic In2O3/Bi2O3 Catalysts Enable Highly Selective CO2 Electroreduction to Formate within Ultra-Broad Potential Windows
Zhongxue Yang , Hongzhi Wang , Xinze Bi , Xiaojie Tan , Yuezhu Zhao , Wenhang Wang , Yecheng Zou , Huaiping Wang , Hui Ning , Mingbo Wu
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12508
Bimetallic In2O3/Bi2O3 Catalysts Enable Highly Selective CO2 Electroreduction to Formate within Ultra-Broad Potential Windows
CO2 electrochemical reduction reaction (CO2RR) to formate is a hopeful pathway for reducing CO2 and producing high-value chemicals, which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands. Herein, the nanorod-like bimetallic In2O3/Bi2O3 catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors. The abundant oxygen vacancies generated from the lattice mismatch of Bi2O3 and In2O3 reduced the activation energy of CO2 to *CO2.- and improved the selectivity of *CO2.- to formate simultaneously. Meanwhile, the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission. The catalyst exhibited an ultra-broad applied potential window of 1200 mV (from -0.4 to -1.6 V vs RHE), relativistic high Faradaic efficiency of formate (99.92%) and satisfactory stability after 30 h. The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO2 molecules, and oxygen vacancy path is dominant pathway. This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO2RR.
bimetallic catalyst / CO 2 electrochemical reduction reaction / formate / oxygen vacancy / wide potential window
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |