Bimetallic In2O3/Bi2O3 Catalysts Enable Highly Selective CO2 Electroreduction to Formate within Ultra-Broad Potential Windows
Zhongxue Yang, Hongzhi Wang, Xinze Bi, Xiaojie Tan, Yuezhu Zhao, Wenhang Wang, Yecheng Zou, Huaiping Wang, Hui Ning, Mingbo Wu
Bimetallic In2O3/Bi2O3 Catalysts Enable Highly Selective CO2 Electroreduction to Formate within Ultra-Broad Potential Windows
CO2 electrochemical reduction reaction (CO2RR) to formate is a hopeful pathway for reducing CO2 and producing high-value chemicals, which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands. Herein, the nanorod-like bimetallic In2O3/Bi2O3 catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors. The abundant oxygen vacancies generated from the lattice mismatch of Bi2O3 and In2O3 reduced the activation energy of CO2 to *CO2.- and improved the selectivity of *CO2.- to formate simultaneously. Meanwhile, the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission. The catalyst exhibited an ultra-broad applied potential window of 1200 mV (from -0.4 to -1.6 V vs RHE), relativistic high Faradaic efficiency of formate (99.92%) and satisfactory stability after 30 h. The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO2 molecules, and oxygen vacancy path is dominant pathway. This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO2RR.
bimetallic catalyst / CO2 electrochemical reduction reaction / formate / oxygen vacancy / wide potential window
[1] |
B. Zha, C. Li, J. Li, J. Catal. 2020, 382, 69.
|
[2] |
C. W. Lee, J. S. Hong, K. D. Yang, K. Jin, J. H. Lee, H. Y. Ahn, H. Seo, N. E. Sung, K. T. Nam, ACS Catal. 2018, 8, 931.
|
[3] |
L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, Adv. Funct. Mater. 2018, 28, 1706289.
|
[4] |
X. Bai, L. Shi, Q. Li, C. Ling, Y. Ouyang, S. Wang, J. Wang, Energy Environ. Mater. 2021, 5, 892.
|
[5] |
K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal. 2019, 10, 358.
|
[6] |
S. Liu, E. Shahini, M. Gao, L. Gong, P. Sui, T. Tang, H. Zeng, J. Luo, ACS Nano 2021, 15, 17747.
|
[7] |
F. Wei, T. Wang, X. Jiang, Y. Ai, A. Cui, J. Cui, J. Fu, J. Cheng, L. Lei, Y. Hou, S. Liu, Adv. Funct. Mater. 2020, 30, 2002092.
|
[8] |
R. Hegner, L. F. M. Rosa, F. Harnisch, Appl. Catal. B Environ. 2018, 238, 546.
|
[9] |
N. Han, P. Ding, L. He, Y. Li, Y. Li, Adv. Energy Mater. 2020, 10, 1902338.
|
[10] |
W. Ma, S. Xie, X. Zhang, F. Sun, J. Kang, Z. Jiang, Q. Zhang, D. Wu, Y. Wang, Nat. Commun. 2019, 10, 892.
|
[11] |
X. Zhao, M. Huang, B. Deng, K. Li, F. Li, F. Dong, Chem. Eng. J. 2022, 437, 135114.
|
[12] |
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 1994, 39, 1833.
|
[13] |
X. Kang, B. Wang, K. Hu, K. Lyu, X. Han, B. F. Spencer, M. D. Frogley, F. Tuna, E. J. L. McInnes, R. A. W. Dryfe, B. Han, S. Yang, M. Schröder, J. Am. Chem. Soc. 2020, 142, 17384.
|
[14] |
W. Zhitong, Z. Yansong, X. Chenfeng, G. Wei, Y. Bo, X. Baoyu, Angew. Chem. Int. Ed. 2021, 60, 19107.
|
[15] |
D. Zhang, Y. Cao, Z. Yang, J. Wu, ACS Appl. Mater. Inter. 2020, 12, 11979.
|
[16] |
W. W. Guo, X. F. Sun, C. J. Chen, D. X. Yang, L. Lu, Y. D. Yang, B. X. Han, Green Chem. 2019, 21, 503.
|
[17] |
B. Wei, Y. S. Xiong, Z. Y. Zhang, J. H. Hao, L. H. Li, W. D. Shi, Appl. Catal. B Environ. 2021, 283, 119646.
|
[18] |
X. Jiang, X. Nie, Y. Gong, C. M. Moran, J. Wang, J. Zhu, H. Chang, X. Guo, K. S. Walton, C. Song, J. Catal. 2020, 383, 283.
|
[19] |
J. Zhang, T. Fan, P. Huang, X. Lian, Y. Guo, Z. Chen, X. Yi, Adv. Funct. Mater. 2022, 32, 2113075.
|
[20] |
C. Azenha, C. Mateos-Pedrero, M. Alvarez-Guerra, A. Irabien, A. Mendes, Chem. Eng. J. 2022, 445, 136575.
|
[21] |
Z. Li, Y. Feng, Y. Li, X. Chen, N. Li, W. He, J. Liu, Chem. Eng. J. 2022, 428, 130901.
|
[22] |
T. Tran Phu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal, A. Tricoli, Adv. Funct. Mater. 2019, 30, 1906478.
|
[23] |
P. Lamagni, M. Miola, J. Catalano, M. S. Hvid, M. A. H. Mamakhel, M. Christensen, M. R. Madsen, H. S. Jeppesen, X. M. Hu, K. Daasbjerg, T. Skrydstrup, N. Lock, Adv. Funct. Mater. 2020, 30, 1910408.
|
[24] |
H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 2018, 8, 1801536.
|
[25] |
P. L. Deng, F. Yang, Z. T. Wang, S. H. Chen, Y. Z. Zhou, S. Zaman, B. Y. Xia, Angew. Chem. Int. Ed. 2020, 59, 10807.
|
[26] |
T. Yan, N. Li, L. Wang, Q. Liu, A. Jelle, L. Wang, Y. Xu, Y. Liang, Y. Dai, B. Huang, J. You, G. A. Ozin, Energ. Environ. Sci. 2020, 13, 3054.
|
[27] |
M. Singh, D. Jampaiah, A. E. Kandjani, Y. M. Sabri, E. Della Gaspera, P. Reineck, M. Judd, J. Langley, N. Cox, J. van Embden, E. L. H. Mayes, B. C. Gibson, S. K. Bhargava, R. Ramanathan, V. Bansal, Nanoscale 2018, 10, 6039.
|
[28] |
Z. Zafar, S. Yi, J. Li, C. Li, Y. Zhu, A. Zada, W. Yao, Z. Liu, X. Yue, Energy Environ. Mater. 2022, 5, 68.
|
[29] |
S. Sun, M. Watanabe, J. Wu, Q. An, T. Ishihara, J. Am. Chem. Soc. 2018, 140, 6474.
|
[30] |
H. Liu, F. Zhang, H. Wang, J. Xue, Y. Guo, Q. Qian, G. Zhang, Energy Environ. Sci. 2021, 14, 5339.
|
[31] |
Q. Li, F. Huang, S. Li, H. Zhang, X. Yu, Small 2021, 18, 2104323.
|
[32] |
F. Gu, C. Li, D. Han, Z. Wang, ACS Appl. Mater. Inter. 2018, 10, 933.
|
[33] |
S. Liu, X. F. Lu, J. Xiao, X. Wang, X. W. D. Lou, Angew. Chem. Int. Edit. 2019, 58, 13828.
|
[34] |
L. Wang, S. Karuturi, L. Zan, Small 2021, 17, 2101833.
|
[35] |
J. Di, C. Chen, C. Zhu, R. Long, H. Chen, X. Cao, J. Xiong, Y. Weng, L. Song, S. Li, H. Li, Y. Xiong, Z. Liu, Adv. Energy Mater. 2021, 11, 2102389.
|
[36] |
J. Kim, H. Park, D. Kim, S. Yang, S. Song, Y. Choi, H. Kim, J.-S. Bae, C. Tam Le, Y. S. Kim, M. Yang, K. Ihm, K.-S. Lee, C.-H. Park, S. Park, J. Alloys Compd. 2021, 878, 160339.
|
[37] |
G. O. Larrazábal, A. J. Martín, S. Mitchell, R. Hauert, J. Pérez-Ramírez, ACS Catal. 2016, 6, 6265.
|
[38] |
C. F. Wu, J. H. Jean, Int. J. Eng. Sci. 2019, 1, 155.
|
[39] |
J. Ye, C. Liu, Q. Ge, J. Mater. Chem. C 2012, 116, 7817.
|
[40] |
J. Ye, C. Liu, D. Mei, Q. Ge, ACS Catal. 2013, 3, 1296.
|
[41] |
B. Qin, S. Li, Phys. Chem. Chem. Phys. 2020, 22, 3390.
|
[42] |
W. Wang, Z. Ma, X. Fei, X. Wang, Z. Yang, Y. Wang, J. Zhang, H. Ning, N. Tsubaki, M. Wu, Chem. Eng. J. 2022, 436, 135029.
|
[43] |
L. Jiang, Y. Li, X. Wu, G. Zhang, Sci. China Mater. 2021, 64, 2230.
|
[44] |
P. Tian, M. Gu, R. Qiu, Z. Yang, F. Xuan, M. Zhu, Ind. Eng. Chem. Res. 2021, 60, 8705.
|
[45] |
M. Zhu, P. Tian, M. E. Ford, J. Chen, J. Xu, Y.-F. Han, I. E. Wachs, ACS Catal. 2020, 10, 7857.
|
[46] |
Z. Yang, H. Wang, X. Fei, W. Wang, Y. Zhao, X. Wang, X. Tan, Q. Zhao, H. Wang, J. Zhu, L. Zhou, H. Ning, M. Wu, Appl. Catal. B Environ. 2021, 298, 120571.
|
[47] |
J. Albo, M. P. Irigaray, G. Beobide, A. Irabien, J. CO2 Util. 2019, 33, 157.
|
[48] |
H. Liu, X. Ma, H. Hu, Y. Pan, W. Zhao, J. Liu, X. Zhao, J. Wang, Z. Yang, Q. Zhao, H. Ning, M. Wu, ACS Appl. Mater. Inter. 2019, 11, 15528.
|
[49] |
X. Wang, W. Wang, J. Zhang, H. Wang, Z. Yang, H. Ning, J. Zhu, Y. Zhang, L. Guan, X. Teng, Q. Zhao, M. Wu, Chem. Eng. J. 2021, 426, 131867.
|
[50] |
W. Y. Deng, L. Zhang, L. L. Li, S. Chen, C. L. Hu, Z. J. Zhao, T. Wang, J. L. Gong, J. Am. Chem. Soc. 2019, 141, 2911.
|
[51] |
B. Innocent, D. Pasquier, F. Ropital, F. Hahn, J. M. Léger, K. B. Kokoh, Appl. Catal. B Environ. 2010, 94, 219.
|
[52] |
S. Collins, M. Baltanas, A. Bonivardi, J. Catal. 2004, 226, 410.
|
[53] |
S. Chen, A. Chen, J. Phys. Chem. C 2019, 123, 23898.
|
[54] |
S. Z. Hou, X. D. Zhang, W. W. Yuan, Y. X. Li, Z. Y. Gu, Inorg. Chem. 2020, 59, 11298.
|
/
〈 | 〉 |