Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination

Zhengyi Lu , Lin Peng , Yi Rong , Enli Wang , Ruhua Shi , Hongxun Yang , Yadong Xu , Ruizhi Yang , Chao Jin

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12498

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12498 DOI: 10.1002/eem2.12498
RESEARCH ARTICLE

Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination

Author information +
History +
PDF

Abstract

Poly(ethylene oxide) (PEO) and Li6.75La3Zr1.75Ta0.25O12 (LLZTO)-based composite polymer electrolytes (CPEs) are considered one of the most promising solid electrolyte systems. However, agglomeration of LLZTO within PEO and lack of Li+ channels result in poor electrochemical properties. Herein, a functional supramolecular combination (CD-TFSI) consisting of active β-cyclodextrin (CD) supramolecular with self-assembled LiTFSI salt is selected as an interface modifier to coat LLZTO fillers. Benefiting from vast H-bonds formed between β-CD and PEO matrix and/or LLZTO, homogeneous dispersion and tight interface contact are obtained. Moreover, 6Li NMR spectra confirm a new Li+ transmission pathway from PEO matrix to LLZTO ceramic then to PEO matrix in the as-prepared PEO/LLZTO@CD-TFSI CPEs due to the typical cavity structure of β-CD. As a proof, the conductivity is increased from 5.3 × 10-4 S cm-1 to 8.7 × 10-4 S cm-1 at 60 ℃, the Li+ transference number is enhanced from 0.38 to 0.48, and the electrochemical stability window is extended to 5.1 V versus Li/Li+. Li‖LiFePO4 CR2032 coin full cells and pouch cells prove the practical application of the as-prepared PEO/LLZTO@CD-TFSI CPEs. This work offers a new strategy of interface modifying LLZTO fillers with functional supramolecular combination to optimize PEO/LLZTO CPEs for solid lithium batteries.

Keywords

conductivity / interfacial stability / LLZTO fillers / modification / PEO matrix

Cite this article

Download citation ▾
Zhengyi Lu, Lin Peng, Yi Rong, Enli Wang, Ruhua Shi, Hongxun Yang, Yadong Xu, Ruizhi Yang, Chao Jin. Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination. Energy & Environmental Materials, 2024, 7(1): 12498 DOI:10.1002/eem2.12498

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. J. Tan, W. P. Wang, Y. F. Tian, S. Xin, Y. G. Guo, Adv. Funct. Mater. 2021, 31, 2105253.

[2]

Y. Zhao, L. Wang, N. Tavajohi, B. Li, T. Li, Adv. Sci. 2021, 8, 2003675.

[3]

L.-Z. Fan, H. He, C.-W. Nan, Nat. Rev. Mater. 2021, 6, 1003.

[4]

S. Li, S. Q. Zhang, W. Lv, Y. B. He, Q. H. Yang, Adv. Sci. 2020, 7, 1903088.

[5]

R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820.

[6]

X. Yu, A. Manthiram, Energy Storage Mater. 2021, 34, 282.

[7]

Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229.

[8]

C.-Z. Zhao, B.-C. Zhao, Y. Mo, H. Li, Q. Zhang, Energy Storage Mater. 2020, 24, 75.

[9]

Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang, L. Sun, S. Zheng, Adv. Sci. 2021, 8, e2100899.

[10]

D. H. S. Tan, A. Banerjee, Z. Chen, Y. S. Meng, Nat. Nanotechnol. 2020, 15, 170.

[11]

K. J. Harry, D. T. Hallinan, A. A. MacDowell, N. P. Balsara, Nat. Mater. 2014, 13, 69.

[12]

J. Zhang, J. Yang, T. Dong, T. Wu, X. Zhou, G. Cui, Small 2018, 14, e1800821.

[13]

Z. Zhou, S. Cao, J. Zhao, Nano Res. 2021,

[14]

D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 1973, 14, 589.

[15]

H. S. Choe, J. Giaccai, M. Alamgir, K. M. Abraham, Electrochim. Acta 1995, 40, 2289.

[16]

E. Cazzanelli, G. B. Appetecchi, B. Scrosati, Electrochim. Acta 1995, 40, 2379.

[17]

Z. X. Wang, B. Y. Huang, L. Q. Chen, F. S. Wang, Electrochim. Acta 1996, 41, 1443.

[18]

J. Zhang, H. Li, Y. Guo, G. Cui, L. Chen, Adv. Energy Mater. 2015, 5, 1501082.

[19]

J. W. Sun, M. Tian, L. Peng, R. Z. Yang, C. Jin, Appl. Mater. Today 2022, 27, 101447.

[20]

J. C. Bachman, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.

[21]

T. Famprikis, P. Canepa, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278.

[22]

Y. Li, C. A. Wang, H. Xie, J. B. Goodenough, J. Mater. Chem. 2012, 22, 15357.

[23]

Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Adv. Mater. 2019, 31, e1902029.

[24]

L. Chen, Y. Li, L. Z. Fan, C. W. Nan, J. B. Goodenough, Nano Energy 2018, 46, 176.

[25]

J. Zhang, N. Zhao, M. Zhang, Z. Di, X. Wang, H. Li, Nano Energy 2016, 28, 447.

[26]

M. Falco, G. Meligrana, C. Gerbaldi, ACS Appl. Energy Mater. 2019, 2, 1600.

[27]

Z. Huang, W. Pang, P. Liang, C. A. Wang, J. Mater. Chem. A 2019, 7, 16425.

[28]

J. Zheng, M. Tang, Y. Y. Hu, Angew. Chem. Int. Ed. Engl. 2016, 55, 12538.

[29]

H. Huo, N. Zhao, J. Sun, F. Du, Y. Li, X. Guo, J. Power Sources 2017,

[30]

Q. Guo, F. Xu, L. Shen, J. Wang, H. He, X. Yao, J. Power Sources 2021, 498, 229934.

[31]

R.-A. Tong, L. Chen, H. Wang, C. A. Wang, J. Power Sources 2021, 492, 229672.

[32]

Y. Zhou, K. Jie, R. Zhao, F. Huang, Adv. Mater. 2020, 32, e1904824.

[33]

L. Imholt, D. Dong, M. Winter, G. Brunklaus, ACS Macro Lett. 2018, 7, 881.

[34]

L. Imholt, I. Cekic-Laskovic, G. Brunklaus, J. Power Sources 2019, 409, 148.

[35]

S. Demirci, S. Kinali-Demirci, B. VanVeller, ACS Appl. Polym. Mater. 2019, 2, 751.

[36]

H. Wang, H. Y. Li, Y. Q. Wang, L. H. Jiang, Carbohydr. Polym. 2014, 113, 166.

[37]

T. Guo, A. H. Bedane, Y. Pan, B. Shirani, M. Eić, Energy Fuels 2017, 31, 4186.

[38]

T. Uyar, R. Havelund, F. Besenbacher, P. Kingshott, ACS Nano 2010, 4, 5121.

[39]

S. Amajjahe, H. Ritter, Macromolecules 2008, 41, 3250.

[40]

C. Yuan, J. Guo, M. Tan, M. Guo, L. Qiu, F. Yan, ACS Macro Lett. 2014, 3, 271.

[41]

L. Cheng, T. Richardson, M. Doeff, Phys. Chem. Chem. Phys. 2014, 16, 18294.

[42]

H. Huo, Y. Chen, N. Zhao, X. Lin, X. Guo, X. Sun, Nano Energy 2019, 61, 119.

[43]

Y. Wang, C. F. Lin, S. B. Lee, ACS Appl. Mater. Interfaces 2018, 10, 24554.

[44]

D. Ensling, M. Stjerndahl, J. O. Thomas, J. Mater. Chem. 2009, 19, 82.

[45]

V. Sharova, A. Moretti, R. J. Behm, S. Passerini, J. Power Sources 2018, 375, 43.

[46]

Y. Pan, G. Wang, B. L. Lucht, Electrochim. Acta 2016, 217, 269.

[47]

Y.-C. Lin, K. Ito, H. Yokoyama, Polymer 2018, 136, 121.

[48]

L. H. Sim, R. Yahya, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 76, 287.

[49]

G. Wang, X. Zhu, A. Rashid, Q. Zhang, L. Zhang, J. Mater. Chem. A 2020, 8, 13351.

[50]

X. X. Tang, Chem. Phys. Lett. 2004, 400, 68.

[51]

J. Qiu, S. J. Lee, D. Nordlund, H. Li, L. Chen, Adv. Funct. Mater. 2020, 30, 1909392.

[52]

S. Xu, Z. Sun, G. Hou, H. M. Cheng, F. Li, Adv. Funct. Mater. 2020, 30, 2007172.

[53]

C. Li, L. Chen, Y. Liu, Y. Tang, J. Jiang, J. Huang, J. Mater. Chem. A 2021, 9, 24661.

[54]

H. Zhuang, Y. Jiang, S. Huang, Z. Chen, B. Zhao, J. Alloys Compd. 2021, 860, 157915.

[55]

S. H.-S. Cheng, M. Kamruzzaman, C. Y. Chung, Electrochim. Acta 2017, 253, 430.

[56]

S. Chen, J. Wang, Z. Wei, Y. D. Xie, X. Yao, X. Xu, J. Power Sources 2018, 387, 72.

[57]

W. Li, C. Sun, J. Jin, Y. Li, C. Chen, Z. Wen, J. Mater. Chem. A 2019, 7, 27304.

[58]

N. Zhang, J. He, W. Han, Y. Wang, J. Mater. Sci. 2019, 54, 9603.

[59]

H.-L. Guo, M. H. Wei, W. K. Shi, J. Y. Cheng, H. J. Zhou, J. Mater. Sci. 2018, 54, 4874.

[60]

L. Chen, X. Qiu, Z. Bai, L.-Z. Fan, J. Energy Chem. 2021, 52, 210.

[61]

X. Huang, B. Xu, B. Wu, X. Liu, H. Li, ACS Appl. Energy Mater. 2021, 4, 9368.

[62]

H. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Adv. Energy Mater. 2020, 10, 2000049.

[63]

Y. Li, L. Zhang, C. Xiao, H. Bu, K. Xi, S. Ding, J. Mater. Chem. A 2020, 8, 9579.

[64]

J. Tan, X. Ao, C. Su, X. Peng, B. Tian, J. Lu, Energy Storage Mater. 2020, 33, 173.

[65]

L. Gao, J. Li, J. Ju, W. Kang, N. Deng, Y. Li, Chem. Eng. J. 2020, 389, 124478.

[66]

P. Zhai, N. Peng, Z. Sun, K. Zhao, J. Wang, J. Mater. Chem. A 2020, 8, 23344.

[67]

H. Huo, Y. Chen, X. Guo, X. Sun, Adv. Energy Mater. 2019, 9, 1804004.

[68]

M. Keller, J. Schuhmacher, A. Roters, S. Passerini, J. Power Sources 2017, 353, 287.

[69]

A. Gupta, J. Sakamoto, Electrochem. Soc. Interface 2019, 28, 63.

[70]

D. Wang, G. Zhong, W. K. Pang, Y. Yang, Chem. Mater. 2015, 27, 6650.

[71]

J. Zheng, Y. Y. Hu, ACS Appl. Mater. Interfaces 2018, 10, 4113.

[72]

L. Peng, Z. Y. Lu, R. Z. Yang, Y. D. Xu, C. Jin, J. Colloid Interface Sci. 2022, 613, 368.

[73]

J. Evans, C. A. Vincent, P. G. Bruce, Polymer 1987, 28, 2324.

RIGHTS & PERMISSIONS

2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

296

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/