Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination

Zhengyi Lu, Lin Peng, Yi Rong, Enli Wang, Ruhua Shi, Hongxun Yang, Yadong Xu, Ruizhi Yang, Chao Jin

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12498. DOI: 10.1002/eem2.12498
RESEARCH ARTICLE

Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination

Author information +
History +

Abstract

Poly(ethylene oxide) (PEO) and Li6.75La3Zr1.75Ta0.25O12 (LLZTO)-based composite polymer electrolytes (CPEs) are considered one of the most promising solid electrolyte systems. However, agglomeration of LLZTO within PEO and lack of Li+ channels result in poor electrochemical properties. Herein, a functional supramolecular combination (CD-TFSI) consisting of active β-cyclodextrin (CD) supramolecular with self-assembled LiTFSI salt is selected as an interface modifier to coat LLZTO fillers. Benefiting from vast H-bonds formed between β-CD and PEO matrix and/or LLZTO, homogeneous dispersion and tight interface contact are obtained. Moreover, 6Li NMR spectra confirm a new Li+ transmission pathway from PEO matrix to LLZTO ceramic then to PEO matrix in the as-prepared PEO/LLZTO@CD-TFSI CPEs due to the typical cavity structure of β-CD. As a proof, the conductivity is increased from 5.3 × 10-4 S cm-1 to 8.7 × 10-4 S cm-1 at 60 ℃, the Li+ transference number is enhanced from 0.38 to 0.48, and the electrochemical stability window is extended to 5.1 V versus Li/Li+. Li‖LiFePO4 CR2032 coin full cells and pouch cells prove the practical application of the as-prepared PEO/LLZTO@CD-TFSI CPEs. This work offers a new strategy of interface modifying LLZTO fillers with functional supramolecular combination to optimize PEO/LLZTO CPEs for solid lithium batteries.

Keywords

conductivity / interfacial stability / LLZTO fillers / modification / PEO matrix

Cite this article

Download citation ▾
Zhengyi Lu, Lin Peng, Yi Rong, Enli Wang, Ruhua Shi, Hongxun Yang, Yadong Xu, Ruizhi Yang, Chao Jin. Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination. Energy & Environmental Materials, 2024, 7(1): 12498 https://doi.org/10.1002/eem2.12498

References

[1]
S. J. Tan, W. P. Wang, Y. F. Tian, S. Xin, Y. G. Guo, Adv. Funct. Mater. 2021, 31, 2105253.
[2]
Y. Zhao, L. Wang, N. Tavajohi, B. Li, T. Li, Adv. Sci. 2021, 8, 2003675.
[3]
L.-Z. Fan, H. He, C.-W. Nan, Nat. Rev. Mater. 2021, 6, 1003.
[4]
S. Li, S. Q. Zhang, W. Lv, Y. B. He, Q. H. Yang, Adv. Sci. 2020, 7, 1903088.
[5]
R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820.
[6]
X. Yu, A. Manthiram, Energy Storage Mater. 2021, 34, 282.
[7]
Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229.
[8]
C.-Z. Zhao, B.-C. Zhao, Y. Mo, H. Li, Q. Zhang, Energy Storage Mater. 2020, 24, 75.
[9]
Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang, L. Sun, S. Zheng, Adv. Sci. 2021, 8, e2100899.
[10]
D. H. S. Tan, A. Banerjee, Z. Chen, Y. S. Meng, Nat. Nanotechnol. 2020, 15, 170.
[11]
K. J. Harry, D. T. Hallinan, A. A. MacDowell, N. P. Balsara, Nat. Mater. 2014, 13, 69.
[12]
J. Zhang, J. Yang, T. Dong, T. Wu, X. Zhou, G. Cui, Small 2018, 14, e1800821.
[13]
Z. Zhou, S. Cao, J. Zhao, Nano Res. 2021,
CrossRef Google scholar
[14]
D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 1973, 14, 589.
[15]
H. S. Choe, J. Giaccai, M. Alamgir, K. M. Abraham, Electrochim. Acta 1995, 40, 2289.
[16]
E. Cazzanelli, G. B. Appetecchi, B. Scrosati, Electrochim. Acta 1995, 40, 2379.
[17]
Z. X. Wang, B. Y. Huang, L. Q. Chen, F. S. Wang, Electrochim. Acta 1996, 41, 1443.
[18]
J. Zhang, H. Li, Y. Guo, G. Cui, L. Chen, Adv. Energy Mater. 2015, 5, 1501082.
[19]
J. W. Sun, M. Tian, L. Peng, R. Z. Yang, C. Jin, Appl. Mater. Today 2022, 27, 101447.
[20]
J. C. Bachman, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.
[21]
T. Famprikis, P. Canepa, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278.
[22]
Y. Li, C. A. Wang, H. Xie, J. B. Goodenough, J. Mater. Chem. 2012, 22, 15357.
[23]
Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Adv. Mater. 2019, 31, e1902029.
[24]
L. Chen, Y. Li, L. Z. Fan, C. W. Nan, J. B. Goodenough, Nano Energy 2018, 46, 176.
[25]
J. Zhang, N. Zhao, M. Zhang, Z. Di, X. Wang, H. Li, Nano Energy 2016, 28, 447.
[26]
M. Falco, G. Meligrana, C. Gerbaldi, ACS Appl. Energy Mater. 2019, 2, 1600.
[27]
Z. Huang, W. Pang, P. Liang, C. A. Wang, J. Mater. Chem. A 2019, 7, 16425.
[28]
J. Zheng, M. Tang, Y. Y. Hu, Angew. Chem. Int. Ed. Engl. 2016, 55, 12538.
[29]
H. Huo, N. Zhao, J. Sun, F. Du, Y. Li, X. Guo, J. Power Sources 2017,
CrossRef Google scholar
[30]
Q. Guo, F. Xu, L. Shen, J. Wang, H. He, X. Yao, J. Power Sources 2021, 498, 229934.
[31]
R.-A. Tong, L. Chen, H. Wang, C. A. Wang, J. Power Sources 2021, 492, 229672.
[32]
Y. Zhou, K. Jie, R. Zhao, F. Huang, Adv. Mater. 2020, 32, e1904824.
[33]
L. Imholt, D. Dong, M. Winter, G. Brunklaus, ACS Macro Lett. 2018, 7, 881.
[34]
L. Imholt, I. Cekic-Laskovic, G. Brunklaus, J. Power Sources 2019, 409, 148.
[35]
S. Demirci, S. Kinali-Demirci, B. VanVeller, ACS Appl. Polym. Mater. 2019, 2, 751.
[36]
H. Wang, H. Y. Li, Y. Q. Wang, L. H. Jiang, Carbohydr. Polym. 2014, 113, 166.
[37]
T. Guo, A. H. Bedane, Y. Pan, B. Shirani, M. Eić, Energy Fuels 2017, 31, 4186.
[38]
T. Uyar, R. Havelund, F. Besenbacher, P. Kingshott, ACS Nano 2010, 4, 5121.
[39]
S. Amajjahe, H. Ritter, Macromolecules 2008, 41, 3250.
[40]
C. Yuan, J. Guo, M. Tan, M. Guo, L. Qiu, F. Yan, ACS Macro Lett. 2014, 3, 271.
[41]
L. Cheng, T. Richardson, M. Doeff, Phys. Chem. Chem. Phys. 2014, 16, 18294.
[42]
H. Huo, Y. Chen, N. Zhao, X. Lin, X. Guo, X. Sun, Nano Energy 2019, 61, 119.
[43]
Y. Wang, C. F. Lin, S. B. Lee, ACS Appl. Mater. Interfaces 2018, 10, 24554.
[44]
D. Ensling, M. Stjerndahl, J. O. Thomas, J. Mater. Chem. 2009, 19, 82.
[45]
V. Sharova, A. Moretti, R. J. Behm, S. Passerini, J. Power Sources 2018, 375, 43.
[46]
Y. Pan, G. Wang, B. L. Lucht, Electrochim. Acta 2016, 217, 269.
[47]
Y.-C. Lin, K. Ito, H. Yokoyama, Polymer 2018, 136, 121.
[48]
L. H. Sim, R. Yahya, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 76, 287.
[49]
G. Wang, X. Zhu, A. Rashid, Q. Zhang, L. Zhang, J. Mater. Chem. A 2020, 8, 13351.
[50]
X. X. Tang, Chem. Phys. Lett. 2004, 400, 68.
[51]
J. Qiu, S. J. Lee, D. Nordlund, H. Li, L. Chen, Adv. Funct. Mater. 2020, 30, 1909392.
[52]
S. Xu, Z. Sun, G. Hou, H. M. Cheng, F. Li, Adv. Funct. Mater. 2020, 30, 2007172.
[53]
C. Li, L. Chen, Y. Liu, Y. Tang, J. Jiang, J. Huang, J. Mater. Chem. A 2021, 9, 24661.
[54]
H. Zhuang, Y. Jiang, S. Huang, Z. Chen, B. Zhao, J. Alloys Compd. 2021, 860, 157915.
[55]
S. H.-S. Cheng, M. Kamruzzaman, C. Y. Chung, Electrochim. Acta 2017, 253, 430.
[56]
S. Chen, J. Wang, Z. Wei, Y. D. Xie, X. Yao, X. Xu, J. Power Sources 2018, 387, 72.
[57]
W. Li, C. Sun, J. Jin, Y. Li, C. Chen, Z. Wen, J. Mater. Chem. A 2019, 7, 27304.
[58]
N. Zhang, J. He, W. Han, Y. Wang, J. Mater. Sci. 2019, 54, 9603.
[59]
H.-L. Guo, M. H. Wei, W. K. Shi, J. Y. Cheng, H. J. Zhou, J. Mater. Sci. 2018, 54, 4874.
[60]
L. Chen, X. Qiu, Z. Bai, L.-Z. Fan, J. Energy Chem. 2021, 52, 210.
[61]
X. Huang, B. Xu, B. Wu, X. Liu, H. Li, ACS Appl. Energy Mater. 2021, 4, 9368.
[62]
H. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Adv. Energy Mater. 2020, 10, 2000049.
[63]
Y. Li, L. Zhang, C. Xiao, H. Bu, K. Xi, S. Ding, J. Mater. Chem. A 2020, 8, 9579.
[64]
J. Tan, X. Ao, C. Su, X. Peng, B. Tian, J. Lu, Energy Storage Mater. 2020, 33, 173.
[65]
L. Gao, J. Li, J. Ju, W. Kang, N. Deng, Y. Li, Chem. Eng. J. 2020, 389, 124478.
[66]
P. Zhai, N. Peng, Z. Sun, K. Zhao, J. Wang, J. Mater. Chem. A 2020, 8, 23344.
[67]
H. Huo, Y. Chen, X. Guo, X. Sun, Adv. Energy Mater. 2019, 9, 1804004.
[68]
M. Keller, J. Schuhmacher, A. Roters, S. Passerini, J. Power Sources 2017, 353, 287.
[69]
A. Gupta, J. Sakamoto, Electrochem. Soc. Interface 2019, 28, 63.
[70]
D. Wang, G. Zhong, W. K. Pang, Y. Yang, Chem. Mater. 2015, 27, 6650.
[71]
J. Zheng, Y. Y. Hu, ACS Appl. Mater. Interfaces 2018, 10, 4113.
[72]
L. Peng, Z. Y. Lu, R. Z. Yang, Y. D. Xu, C. Jin, J. Colloid Interface Sci. 2022, 613, 368.
[73]
J. Evans, C. A. Vincent, P. G. Bruce, Polymer 1987, 28, 2324.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/