Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination
Zhengyi Lu, Lin Peng, Yi Rong, Enli Wang, Ruhua Shi, Hongxun Yang, Yadong Xu, Ruizhi Yang, Chao Jin
Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination
Poly(ethylene oxide) (PEO) and Li6.75La3Zr1.75Ta0.25O12 (LLZTO)-based composite polymer electrolytes (CPEs) are considered one of the most promising solid electrolyte systems. However, agglomeration of LLZTO within PEO and lack of Li+ channels result in poor electrochemical properties. Herein, a functional supramolecular combination (CD-TFSI) consisting of active β-cyclodextrin (CD) supramolecular with self-assembled LiTFSI salt is selected as an interface modifier to coat LLZTO fillers. Benefiting from vast H-bonds formed between β-CD and PEO matrix and/or LLZTO, homogeneous dispersion and tight interface contact are obtained. Moreover, 6Li NMR spectra confirm a new Li+ transmission pathway from PEO matrix to LLZTO ceramic then to PEO matrix in the as-prepared PEO/LLZTO@CD-TFSI CPEs due to the typical cavity structure of β-CD. As a proof, the conductivity is increased from 5.3 × 10-4 S cm-1 to 8.7 × 10-4 S cm-1 at 60 ℃, the Li+ transference number is enhanced from 0.38 to 0.48, and the electrochemical stability window is extended to 5.1 V versus Li/Li+. Li‖LiFePO4 CR2032 coin full cells and pouch cells prove the practical application of the as-prepared PEO/LLZTO@CD-TFSI CPEs. This work offers a new strategy of interface modifying LLZTO fillers with functional supramolecular combination to optimize PEO/LLZTO CPEs for solid lithium batteries.
conductivity / interfacial stability / LLZTO fillers / modification / PEO matrix
[1] |
S. J. Tan, W. P. Wang, Y. F. Tian, S. Xin, Y. G. Guo, Adv. Funct. Mater. 2021, 31, 2105253.
|
[2] |
Y. Zhao, L. Wang, N. Tavajohi, B. Li, T. Li, Adv. Sci. 2021, 8, 2003675.
|
[3] |
L.-Z. Fan, H. He, C.-W. Nan, Nat. Rev. Mater. 2021, 6, 1003.
|
[4] |
S. Li, S. Q. Zhang, W. Lv, Y. B. He, Q. H. Yang, Adv. Sci. 2020, 7, 1903088.
|
[5] |
R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820.
|
[6] |
X. Yu, A. Manthiram, Energy Storage Mater. 2021, 34, 282.
|
[7] |
Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229.
|
[8] |
C.-Z. Zhao, B.-C. Zhao, Y. Mo, H. Li, Q. Zhang, Energy Storage Mater. 2020, 24, 75.
|
[9] |
Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang, L. Sun, S. Zheng, Adv. Sci. 2021, 8, e2100899.
|
[10] |
D. H. S. Tan, A. Banerjee, Z. Chen, Y. S. Meng, Nat. Nanotechnol. 2020, 15, 170.
|
[11] |
K. J. Harry, D. T. Hallinan, A. A. MacDowell, N. P. Balsara, Nat. Mater. 2014, 13, 69.
|
[12] |
J. Zhang, J. Yang, T. Dong, T. Wu, X. Zhou, G. Cui, Small 2018, 14, e1800821.
|
[13] |
Z. Zhou, S. Cao, J. Zhao, Nano Res. 2021,
CrossRef
Google scholar
|
[14] |
D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 1973, 14, 589.
|
[15] |
H. S. Choe, J. Giaccai, M. Alamgir, K. M. Abraham, Electrochim. Acta 1995, 40, 2289.
|
[16] |
E. Cazzanelli, G. B. Appetecchi, B. Scrosati, Electrochim. Acta 1995, 40, 2379.
|
[17] |
Z. X. Wang, B. Y. Huang, L. Q. Chen, F. S. Wang, Electrochim. Acta 1996, 41, 1443.
|
[18] |
J. Zhang, H. Li, Y. Guo, G. Cui, L. Chen, Adv. Energy Mater. 2015, 5, 1501082.
|
[19] |
J. W. Sun, M. Tian, L. Peng, R. Z. Yang, C. Jin, Appl. Mater. Today 2022, 27, 101447.
|
[20] |
J. C. Bachman, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.
|
[21] |
T. Famprikis, P. Canepa, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278.
|
[22] |
Y. Li, C. A. Wang, H. Xie, J. B. Goodenough, J. Mater. Chem. 2012, 22, 15357.
|
[23] |
Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Adv. Mater. 2019, 31, e1902029.
|
[24] |
L. Chen, Y. Li, L. Z. Fan, C. W. Nan, J. B. Goodenough, Nano Energy 2018, 46, 176.
|
[25] |
J. Zhang, N. Zhao, M. Zhang, Z. Di, X. Wang, H. Li, Nano Energy 2016, 28, 447.
|
[26] |
M. Falco, G. Meligrana, C. Gerbaldi, ACS Appl. Energy Mater. 2019, 2, 1600.
|
[27] |
Z. Huang, W. Pang, P. Liang, C. A. Wang, J. Mater. Chem. A 2019, 7, 16425.
|
[28] |
J. Zheng, M. Tang, Y. Y. Hu, Angew. Chem. Int. Ed. Engl. 2016, 55, 12538.
|
[29] |
H. Huo, N. Zhao, J. Sun, F. Du, Y. Li, X. Guo, J. Power Sources 2017,
CrossRef
Google scholar
|
[30] |
Q. Guo, F. Xu, L. Shen, J. Wang, H. He, X. Yao, J. Power Sources 2021, 498, 229934.
|
[31] |
R.-A. Tong, L. Chen, H. Wang, C. A. Wang, J. Power Sources 2021, 492, 229672.
|
[32] |
Y. Zhou, K. Jie, R. Zhao, F. Huang, Adv. Mater. 2020, 32, e1904824.
|
[33] |
L. Imholt, D. Dong, M. Winter, G. Brunklaus, ACS Macro Lett. 2018, 7, 881.
|
[34] |
L. Imholt, I. Cekic-Laskovic, G. Brunklaus, J. Power Sources 2019, 409, 148.
|
[35] |
S. Demirci, S. Kinali-Demirci, B. VanVeller, ACS Appl. Polym. Mater. 2019, 2, 751.
|
[36] |
H. Wang, H. Y. Li, Y. Q. Wang, L. H. Jiang, Carbohydr. Polym. 2014, 113, 166.
|
[37] |
T. Guo, A. H. Bedane, Y. Pan, B. Shirani, M. Eić, Energy Fuels 2017, 31, 4186.
|
[38] |
T. Uyar, R. Havelund, F. Besenbacher, P. Kingshott, ACS Nano 2010, 4, 5121.
|
[39] |
S. Amajjahe, H. Ritter, Macromolecules 2008, 41, 3250.
|
[40] |
C. Yuan, J. Guo, M. Tan, M. Guo, L. Qiu, F. Yan, ACS Macro Lett. 2014, 3, 271.
|
[41] |
L. Cheng, T. Richardson, M. Doeff, Phys. Chem. Chem. Phys. 2014, 16, 18294.
|
[42] |
H. Huo, Y. Chen, N. Zhao, X. Lin, X. Guo, X. Sun, Nano Energy 2019, 61, 119.
|
[43] |
Y. Wang, C. F. Lin, S. B. Lee, ACS Appl. Mater. Interfaces 2018, 10, 24554.
|
[44] |
D. Ensling, M. Stjerndahl, J. O. Thomas, J. Mater. Chem. 2009, 19, 82.
|
[45] |
V. Sharova, A. Moretti, R. J. Behm, S. Passerini, J. Power Sources 2018, 375, 43.
|
[46] |
Y. Pan, G. Wang, B. L. Lucht, Electrochim. Acta 2016, 217, 269.
|
[47] |
Y.-C. Lin, K. Ito, H. Yokoyama, Polymer 2018, 136, 121.
|
[48] |
L. H. Sim, R. Yahya, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 76, 287.
|
[49] |
G. Wang, X. Zhu, A. Rashid, Q. Zhang, L. Zhang, J. Mater. Chem. A 2020, 8, 13351.
|
[50] |
X. X. Tang, Chem. Phys. Lett. 2004, 400, 68.
|
[51] |
J. Qiu, S. J. Lee, D. Nordlund, H. Li, L. Chen, Adv. Funct. Mater. 2020, 30, 1909392.
|
[52] |
S. Xu, Z. Sun, G. Hou, H. M. Cheng, F. Li, Adv. Funct. Mater. 2020, 30, 2007172.
|
[53] |
C. Li, L. Chen, Y. Liu, Y. Tang, J. Jiang, J. Huang, J. Mater. Chem. A 2021, 9, 24661.
|
[54] |
H. Zhuang, Y. Jiang, S. Huang, Z. Chen, B. Zhao, J. Alloys Compd. 2021, 860, 157915.
|
[55] |
S. H.-S. Cheng, M. Kamruzzaman, C. Y. Chung, Electrochim. Acta 2017, 253, 430.
|
[56] |
S. Chen, J. Wang, Z. Wei, Y. D. Xie, X. Yao, X. Xu, J. Power Sources 2018, 387, 72.
|
[57] |
W. Li, C. Sun, J. Jin, Y. Li, C. Chen, Z. Wen, J. Mater. Chem. A 2019, 7, 27304.
|
[58] |
N. Zhang, J. He, W. Han, Y. Wang, J. Mater. Sci. 2019, 54, 9603.
|
[59] |
H.-L. Guo, M. H. Wei, W. K. Shi, J. Y. Cheng, H. J. Zhou, J. Mater. Sci. 2018, 54, 4874.
|
[60] |
L. Chen, X. Qiu, Z. Bai, L.-Z. Fan, J. Energy Chem. 2021, 52, 210.
|
[61] |
X. Huang, B. Xu, B. Wu, X. Liu, H. Li, ACS Appl. Energy Mater. 2021, 4, 9368.
|
[62] |
H. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Adv. Energy Mater. 2020, 10, 2000049.
|
[63] |
Y. Li, L. Zhang, C. Xiao, H. Bu, K. Xi, S. Ding, J. Mater. Chem. A 2020, 8, 9579.
|
[64] |
J. Tan, X. Ao, C. Su, X. Peng, B. Tian, J. Lu, Energy Storage Mater. 2020, 33, 173.
|
[65] |
L. Gao, J. Li, J. Ju, W. Kang, N. Deng, Y. Li, Chem. Eng. J. 2020, 389, 124478.
|
[66] |
P. Zhai, N. Peng, Z. Sun, K. Zhao, J. Wang, J. Mater. Chem. A 2020, 8, 23344.
|
[67] |
H. Huo, Y. Chen, X. Guo, X. Sun, Adv. Energy Mater. 2019, 9, 1804004.
|
[68] |
M. Keller, J. Schuhmacher, A. Roters, S. Passerini, J. Power Sources 2017, 353, 287.
|
[69] |
A. Gupta, J. Sakamoto, Electrochem. Soc. Interface 2019, 28, 63.
|
[70] |
D. Wang, G. Zhong, W. K. Pang, Y. Yang, Chem. Mater. 2015, 27, 6650.
|
[71] |
J. Zheng, Y. Y. Hu, ACS Appl. Mater. Interfaces 2018, 10, 4113.
|
[72] |
L. Peng, Z. Y. Lu, R. Z. Yang, Y. D. Xu, C. Jin, J. Colloid Interface Sci. 2022, 613, 368.
|
[73] |
J. Evans, C. A. Vincent, P. G. Bruce, Polymer 1987, 28, 2324.
|
/
〈 | 〉 |