In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries
Fuhe Wang , Honghao Liu , Yaqing Guo , Qigao Han , Ping Lou , Long Li , Jianjie Jiang , Shijie Cheng , Yuancheng Cao
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12497
In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries
Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage. However, the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries. Here, a tri-monomer copolymerized gel polymer electrolyte (TGPE) with a cross-linked reticulation structure was prepared by introducing a cross-linker (polyurethane group) into the acrylate-based in situ polymerization system. The soft segment of polyurethane in TGPE enables the far migration of lithium ions, and the -NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework. This system hinders anion migration and leads to a high Li+ migration number (= 0.65), which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth. As a result, the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm-2. The LFP¦¦TGPE¦¦Li cell has a capacity retention of 89.8% after cycling 800 times at a rate of 1C. In summary, in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.
gel polymer electrolytes / hydrogen bonds / in situ polymerization / lithium metal batteries / polyurethane
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |