Oxidation of Methacrolein to Methacrylic Acid over Cu, P, Mo, V-Composites

Weihua Wang , Wenjie Xu , Nan Zhang , Mingming Chen , Jingqing Zhang , Hongxing Liu , Jianqiang Wang , Yongfeng Hu

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70091

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70091 DOI: 10.1002/eem2.70091
RESEARCH ARTICLE

Oxidation of Methacrolein to Methacrylic Acid over Cu, P, Mo, V-Composites

Author information +
History +
PDF

Abstract

The purpose of this study is to develop novel P-Mo-V heteropoly compound catalysts for the oxidation of methacrolein to methacrylic acid. The introduction of Cu, as a modifying element, was employed to enhance the catalytic performance. Experimental results show that the addition of Cu significantly improved the catalyst performance, increasing the conversion rate of methacrolein from 17.2% to 84.2%, while the yield of methacrylic acid was boosted from 5.5% to 51.7%. A series of characterization results showed that both P-Mo-V and Cu-P-Mo-V catalysts primarily exhibited the crystal phase of [PMo12O40]3−, with a small amount of [PMo11VO40]3− phase. However, the Cu-P-Mo-V catalyst exhibited much better oxidation–reduction ability compared to the P-Mo-V catalyst. Isolated Cu atoms were found to exist in a highly decentralized tetrahedral coordination structure, bridged by oxygen atoms within the heteropoly compound framework. The addition of Cu resulted in notable alterations in the modulation of the surface electronic structure, enhancement of oxidation–reduction ability, and optimization of the reaction pathway, thereby improving the overall catalytic activity of the catalyst. This study not only provides new insights into the modification of P-Mo-V heteropoly compound catalysts but also lays a foundation for understanding their catalytic mechanisms in organic synthesis reactions, demonstrating the potential of modifying elements in improving catalyst performance.

Keywords

cu, p, mo, v-composite / heteropoly compounds / methacrolein / methacrylic acid / oxidation

Cite this article

Download citation ▾
Weihua Wang, Wenjie Xu, Nan Zhang, Mingming Chen, Jingqing Zhang, Hongxing Liu, Jianqiang Wang, Yongfeng Hu. Oxidation of Methacrolein to Methacrylic Acid over Cu, P, Mo, V-Composites. Energy & Environmental Materials, 2025, 8(5): e70091 DOI:10.1002/eem2.70091

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Wang, Y. Li, H. Zhang, J. Xin, Chem. Ind. Eng. 2007, 24, 510.

[2]

R. M. Deshpande, M. M. Diwakar, A. N. Mahajan, R. V. Chaudhari, J. Mol. Catal. A Chem. 2004, 211, 49.

[3]

T. Yui, Y. Abe, H. Ogawa, M. Kitahara, Nippon Kagaku Kaishi 1972, 1975, 481.

[4]

M. Phagare, Methacrylic Acid Market Report 2025 (Global Edition), 8th ed., Cognitive Market Research, Chicago 2025; Report No. CMR707233, https://www.cognitivemarketresearch.com/methacrylic-acid-market-report.

[5]

H. Onodera, S. Ohno, I. Kurimoto, Y. Aoki, Process for Producing Methacrolein and Methacrylic Acid, US Patent, US05276178A, 1994.

[6]

F. Cavani, R. Mezzogori, A. Pigamo, F. Trifirò, C. R. Acad. Sci. 2000, 3, 523.

[7]

F. Cavani, R. Mezzogori, A. Pigamo, F. Trifirò, E. Etienne, Catal. Today 2001, 71, 97.

[8]

F. Cavani, E. Etienne, R. Mezzogori, A. Pigamo, F. Trifirò, Catal. Lett. 2001, 75, 99.

[9]

L. Zhou, L. Wang, S. Zhang, R. Yan, Y. Diao, J. Catal. 2015, 329, 431.

[10]

H. Liu, C. Gao, J. Chen, Appl. Catal. Environ. 2023, 332, 122742.

[11]

B. Viswanadham, J. Pedada, H. B. Friedrich, S. Singh, Catal. Lett. 2016, 146, 1470.

[12]

W. M. Fantim, J. G. Rocha Poço, S. Derenzo, Chem. Eng. Technol. 2023, 47, 117.

[13]

M. J. D. Silva, A. A. Rodrigues, N. P. G. Lopes, Inorganics 2023, 11, 162.

[14]

B. Wang, H. Dong, L. Z. Lu, H. Liu, Z. Zhang, J. Zhu, Catalysts. 2021, 11, 394.

[15]

K. Stefan, H. Maurice, N. Niklas, O. Dominik, S. Joerg, D. Alfons, E. Bastian, A. Barbara, V. Herbert, Cat. Sci. Technol. 2020, 10, 5231.

[16]

V. D. Tytsenko, W. H. Lee, J. W. Lee, Kinet. Catal. 2001, 42, 212.

[17]

T. V. Andrushkevich, G. Y. Popova, Russ. Chem. Rev. 1991, 60, 1023.

[18]

L. Zhou, S. Zhang, Z. Li, J. Scott, Z. Zhang, R. Liu, J. Yun, RSC Adv. 2019, 9, 34065.

[19]

Y. Liu, S. Wang, Y. Li, X. Cai, M. Zhu, X. Han, Appl. Catal. A Gen. 2022, 643, 118789.

[20]

J. C. A. Boeyens, G. J. Mcdougal, J. V. R. Smit, J. Solid State Chem. 1976, 18, 191.

[21]

Y. F. Zheng, J. J. Wang, Y. D. Wang, H. Zhou, Z. Y. Pu, Q. Yang, W. Z. Huang, Molecules 2020, 25, 2.

[22]

W. B. Ying, Y. Mizokawa, Y. Kamiura, K. Kawamoto, W. Y. Yang, Appl. Surf. Sci. 2001,

[23]

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. D. Gryse, J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167.

[24]

L. M. Plyasova, L. P. Solov'eva, S. V. Tsybulya, G. N. Kryukova, V. A. Zabolotnyi, I. P. Olen'kova, J. Struct. Chem. 1991, 32, 89.

[25]

Q. Wu, A. Thissen, W. Jaegermann, M. Liu, Appl. Surf. Sci. 2004, 236, 473.

[26]

J. F. Moulder, J. Chastain, R. C. King, Chem. Phys. Lett. 1992, 220, 7.

[27]

A. Lisowska-Oleksiak, M. Wilamowska, V. Jasulaitiené, Electrochim. Acta 2011, 56, 3626.

[28]

L. D. Nguyen, S. Loridant, H. Launay, A. Pigamo, J. L. Dubois, J. M. M. Millet, J. Catal. 2006, 237, 38.

[29]

R. K. Grasselli, S. T. Oyama, A. M. Gaffney, J. E. Lyons, Studies in Surface Science and Catalysis, Vol. 110, Elsevier Science, Amsterdam 1997, pp. 1–25. ISBN: 9780444827722.

[30]

F. Arena, A. Parmaliana, J. Phys. Chem. 1996, 100, 19994.

[31]

P. Mars, D. W. V. Krevelen, Chem. Eng. Sci. 1954, 3, 41.

[32]

J. Xu, Y. Zhang, X. Yue, J. Huo, D. Xiong, P. Zhang, Green Chem. 2021, 23, 5549.

[33]

K. Wilson, Appl. Organomet. Chem. 2007, 21, 1002.

[34]

T. V. Andrushkevich, L. M. Plyasova, G. G. Kuznetsova, V. M. Bondareva, N. I. Lebedeva, React. Kinet. Catal. Lett. 1979, 12, 463.

[35]

H. Böhnke, J. Gaube, J. Petzoldt, Ind. Eng. Chem. Res. 2006, 45, 8794.

[36]

H. Böhnke, J. Gaube, J. Petzoldt, Ind. Eng. Chem. Res. 2006, 45, 8801.

[37]

Z. W. Ueda, ACS Catal. 2018, 8, 2935.

[38]

J. Guan, H. Wang, Y. Yang, B. Liu, X. Yu, Y. Ma, Q. Kan, Catal. Lett. 2009, 131, 512.

[39]

W. Wang, W. Xu, W. Song, B. Yang, L. Li, X. Guo, L. Wu, H. Liu, Catal. Lett. 2021, 151, 2326.

[40]

R. Sadasivan, A. Patel, Inorg. Chim. Acta 2020, 510, 119757.

[41]

L. Marosi, G. Cox, A. Tenten, H. Hibst, Catal. Lett. 2020, 67, 193.

[42]

L. Yang, H. Zhang, R. Y. Yan, X. P. Zhang, G. J. Zhang, B. Z. Ren, Adv. Mat. Res. 2012, 550, 252.

[43]

Y. L. Cao, L. Wang, L. L. Zhou, G. Zhang, S. J. Zhang, Ind. Eng. Chem. Res. 2017, 56, 653.

[44]

S. Ishikawa, N. Noda, M. Wada, S. Tsurumi, W. Ueda, ACS Catal. 2020, 10, 10535.

[45]

S. Illies, B. Kraushaar-Czarnetzki, Ind. Eng. Chem. Res. 2016, 55, 8509.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/