Unlocking the Electrochemical Activation of Diatomaceous Earth SiO2 Anodes for Next-Generation Li-Ion Batteries

Weicheng Hua , Per Erik Vullum , Kristianne Nilsen-Nygaard Hjelseng , Johan Hamonnet , Pedro Alonso-Sánchez , Jiefang Zhu , Zoltan Hegedüs , Juan Rubio Zuazo , Federico Cova , Ann Mari Svensson , Maria Valeria Blanco

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70074

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70074 DOI: 10.1002/eem2.70074
RESEARCH ARTICLE

Unlocking the Electrochemical Activation of Diatomaceous Earth SiO2 Anodes for Next-Generation Li-Ion Batteries

Author information +
History +
PDF

Abstract

Silica (SiO2) anodes are promising candidates for enhancing the energy density of next-generation Li-ion batteries, offering a compelling combination of high storage capacity, stable cycling performance, low cost, and sustainability. This performance stems from SiO2 unique lithiation mechanism, which involves its conversion to electroactive silicon (Si) and electrochemically inactive species. However, widespread adoption of SiO2 anodes is hindered by their slow initial lithiation. To address this, research has focused on developing electrochemical “activation protocols” that involve prolonged low-potential holding steps to promote SiO2 conversion. Despite these efforts, the complex and multi-pathway nature of SiO2 lithiation process remains poorly understood, impeding the rational design of effective activation strategies. By introducing a multi-probe characterization approach, this study reveals that, contrary to the previously proposed reaction mechanism of SiO2 anodes, the lithiation process initiates at low potentials with the direct formation of Li4SiO4 and LixSi. Electrochemical activation potential was found to significantly influence the degree of conversion, with 10 mV identified as the optimal cut-off potential for maximizing SiO2 utilization. These findings provide key enablers to unlock the full potential of SiO2 anodes for battery technology.

Keywords

battery anode / lithiation / reaction mechanism / silica / synchrotron

Cite this article

Download citation ▾
Weicheng Hua, Per Erik Vullum, Kristianne Nilsen-Nygaard Hjelseng, Johan Hamonnet, Pedro Alonso-Sánchez, Jiefang Zhu, Zoltan Hegedüs, Juan Rubio Zuazo, Federico Cova, Ann Mari Svensson, Maria Valeria Blanco. Unlocking the Electrochemical Activation of Diatomaceous Earth SiO2 Anodes for Next-Generation Li-Ion Batteries. Energy & Environmental Materials, 2025, 8(6): e70074 DOI:10.1002/eem2.70074

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.

[2]

Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 2018, 3, 279.

[3]

B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.

[4]

B. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419.

[5]

N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252.

[6]

M. N. Obrovac, L. Christensen, Electrochem. Solid-State Lett. 2004, 7, A93.

[7]

J. Li, J. R. Dahn, J. Electrochem. Soc. 2007, 154, A156.

[8]

M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966.

[9]

F. Shi, Z. Song, P. N. Ross, G. A. Somorjai, R. O. Ritchie, K. Komvopoulos, Nat. Commun. 2016, 7, 11886.

[10]

L. Sun, Y. Liu, R. Shao, J. Wu, R. Jiang, Z. Jin, Energy Storage Mater. 2022, 46, 482.

[11]

K. Feng, M. Li, W. Liu, A. G. Kashkooli, X. Xiao, M. Cai, Z. Chen, Small 2018, 14, 1702737.

[12]

N. Kim, Y. Kim, J. Sung, J. Cho, Nat. Energy 2023, 8, 921.

[13]

M. Ashuri, Q. He, L. L. Shaw, J. Power Sources 2023, 559, 232660.

[14]

X. Ma, Z. Wei, H. Han, X. Wang, K. Cui, L. Yang, Chem. Eng. J. 2017, 323, 252.

[15]

B. Gao, S. Sinha, L. Fleming, O. Zhou, Adv. Mater. 2001, 13, 816.

[16]

T. Liu, Y. Qu, J. Liu, L. Zhang, B. Cheng, J. Yu, Small 2021, 17, 2103673.

[17]

X. Dong, C. Woo, S. Oh, Y. Kim, X. Zhang, K. H. Choi, J. Kang, H.-S. Bang, J. Jeon, H.-S. Oh, D. Kim, H. K. Yu, J. Mun, J.-Y. Choi, ACS Appl. Energy Mater. 2024, 7, 7478.

[18]

D. Wang, T. Wang, M. He, T. Wang, H. Wang, Small 2021, 17, 2103878.

[19]

K. Min, K. Kim, H. An, Y. Go, Y. Lee, D. Lim, S. H. Baeck, J. Power Sources 2022, 543, 231849.

[20]

J. E. Entwistle, S. G. Booth, D. S. Keeble, F. Ayub, M. Yan, S. A. Corr, D. J. Cumming, S. V. Patwardhan, Adv. Energy Mater. 2020, 10, 2001826.

[21]

Y. Chen, H. Liu, K. Yang, Z. Nie, J. Xia, Z. Shen, J. Xie, H. Liu, J. Mater. Chem. A 2023, 11, 16704.

[22]

Y. Jiang, F. Zhao, X. Wu, L. Zeng, L. Yang, L. Guan, Y. Ren, X. Zhou, Z. Liu, Langmuir 2024, 40, 20261.

[23]

V. Renman, M. V. Blanco, A. N. Norberg, F. Vullum-Bruer, A. M. Svensson, Solid State Ionics 2021, 371, 115766.

[24]

K. Thangaian, W. Hua, J. T. Aga Karlsen, I. E. Nylund, S. Nilsson, T. Ericson, M. Hahlin, A. M. Svensson, M. V. Blanco, ACS Sustainable Resource Management 2024, 1, 767.

[25]

M. V. Blanco, V. Renman, F. Vullum-Bruer, A. M. Svensson, RSC Adv. 2020, 10, 33490.

[26]

W. Hua, I. E. Nylund, F. Cova, A. M. Svensson, M. V. Blanco, Sci. Rep. 2023, 13, 20447.

[27]

G. Lener, M. Otero, D. E. Barraco, E. P. M. Leiva, Electrochim. Acta 2018, 259, 1053.

[28]

F. Lepoivre, D. Larcher, J. M. Tarascon, J. Electrochem. Soc. 2016, 163, A2791.

[29]

T. Kim, S. Park, S. M. Oh, J. Electrochem. Soc. 2007, 154, A1112.

[30]

B. Guo, J. Shu, Z. Wang, H. Yang, L. Shi, Y. Liu, L. Chen, Electrochem. Commun. 2008, 10, 1876.

[31]

Q. Sun, B. Zhang, Z. W. Fu, Appl. Surf. Sci. 2008, 254, 3774.

[32]

W. S. Chang, C. M. Park, J. H. Kim, Y. U. Kim, G. Jeong, H. J. Sohn, Energy Environ. Sci. 2012, 5, 6895.

[33]

Y. Jin, N. J. H. Kneusels, L. E. Marbella, E. Castillo-Martínez, P. C. M. M. Magusin, R. S. Weatherup, E. Jónsson, T. Liu, S. Paul, C. P. Grey, J. Am. Chem. Soc. 2018, 140, 9854.

[34]

K. Yao, J. P. Zheng, R. Liang, J. Power Sources 2018, 381, 164.

[35]

K. A. See, M. A. Lumley, G. D. Stucky, C. P. Grey, R. Seshadri, J. Electrochem. Soc. 2016, 164, A327.

[36]

H. Jia, X. Li, J. Song, X. Zhang, L. Luo, Y. He, B. Li, Y. Cai, S. Hu, X. Xiao, C. Wang, K. M. Rosso, R. Yi, R. Patel, J. G. Zhang, Nat. Commun. 2020, 11, 1474.

[37]

N. P. Wagner, K. Asheim, F. Vullum-Bruer, A. M. Svensson, J. Power Sources 2019, 437, 226884.

[38]

J. Z. Olson, C. M. López, E. J. F. Dickinson, Chem. Mater. 2023, 35, 1487.

[39]

C. Heubner, T. Liebmann, O. Lohrberg, S. Cangaz, S. Maletti, A. Michaelis, Batter. Supercaps 2022, 5, e202100182.

[40]

T. Yoon, C. C. Nguyen, D. M. Seo, B. L. Lucht, J. Electrochem. Soc. 2015, 162, A2325.

[41]

C. Cao, I. I. Abate, E. Sivonxay, B. Shyam, C. Jia, B. Moritz, T. P. Devereaux, K. A. Persson, H. G. Steinrück, M. F. Toney, Joule 2019, 3, 762.

[42]

B. Philippe, R. Dedryvère, J. Allouche, F. Lindgren, M. Gorgoi, H. Rensmo, D. Gonbeau, K. Edström, Chem. Mater. 2012, 24, 1107.

[43]

K. Edström, M. Herstedt, D. P. Abraham, J. Power Sources 2006, 153, 380.

[44]

W. Huang, J. Wang, M. R. Braun, Z. Zhang, Y. Li, D. T. Boyle, P. C. McIntyre, Y. Cui, Matter 2019, 1, 1232.

[45]

E. Sivonxay, M. Aykol, K. A. Persson, Electrochim. Acta 2020, 331, 135344.

[46]

Y. Zhang, Y. Li, Z. Wang, K. Zhao, Nano Lett. 2014, 14, 7161.

[47]

A. Ostadhossein, S. Y. Kim, E. D. Cubuk, Y. Qi, A. C. T. van Duin, J. Phys. Chem. A 2016, 120, 2114.

[48]

K. J. Jeong, S. Hossen, M. T. Rahman, J. S. Shim, D. H. Lee, H. H. Nersisyan, K.-. J. Jeong, D.-. H. Lee, J. H. Lee, Adv. Mater. Technol. 2024, 9, 2302055.

[49]

S. Vankova, D. Versaci, J. Amici, A. Ferrari, R. Rizzi, A. Altomare, S. Guastella, C. Francia, S. Bodoardo, N. Penazzi, J. Solid State Electrochem. 2017, 21, 3381.

[50]

R. E. Ruther, K. A. Hays, S. J. An, J. Li, D. L. Wood, J. Nanda, ACS Appl. Mater. Interfaces 2018, 10, 18641.

[51]

A. N. Norberg, N. P. Wagner, H. Kaland, F. Vullum-Bruer, A. M. Svensson, RSC Adv. 2019, 9, 41228.

[52]

F. Fröhlich, J. Non-Cryst. Solids 2020, 533, 119938.

[53]

S. Oswald, E. Lattner, M. Seifert, Surf. Interface Anal. 2020, 52, 924.

[54]

J. Rubio-Zuazo, G. R. Castro, Surf. Interface Anal. 2008, 40, 1438.

[55]

N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesinger, S. Tougaard, D. Morgan, J. Baltrusaitis, Appl. Surf. Sci. Adv. 2021, 5, 100112.

[56]

J. Rubio-Zuazo, G. R. Castro, Appl. Surf. Sci. 2022, 599, 153918.

[57]

J. H. Scofield, Theoretical Photoionization Cross Sections From 1 to 1500 keV, California Univ., Lawrence Livermore Lab, Livermore 1973.

[58]

G. Artioli, T. Cerulli, G. Cruciani, M. C. Dalconi, G. Ferrari, M. Parisatto, A. Rack, R. Tucoulou, Anal. Bioanal. Chem. 2010, 397, 2131.

[59]

J. Kieffer, D. Karkoulis, J. Phys. Conf. Ser. 2013, 425, 202012.

[60]

M. V. Blanco, D. Devaux, A. M. Valtavirta, C. Cosculluela, Y. Watier, L. Quazuguel, M. Deschamps, M. Lecuyer, R. Bouchet, F. Cova, J. Electrochem. Soc. 2020, 167, 160517.

[61]

D. P. Finegan, A. Vamvakeros, L. Cao, C. Tan, T. M. M. Heenan, S. R. Daemi, S. D. M. Jacques, A. M. Beale, M. Di Michiel, K. Smith, D. J. L. Brett, P. R. Shearing, C. Ban, Nano Lett. 2019, 19, 3811.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/