Spin–Orbit Coupling-Regulated Anti-Kasha Rule for Photoswitchable Catalysis

Ailin Gao , Changchao Jia

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70067

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70067 DOI: 10.1002/eem2.70067
HIGHLIGHT

Spin–Orbit Coupling-Regulated Anti-Kasha Rule for Photoswitchable Catalysis

Author information +
History +
PDF

Abstract

Photoswitchable catalysis provides a non-invasive strategy for dynamically controlling light-driven chemical energy conversion processes. The defining advantage of photoswitchable catalytic systems lies in their unique dual capacity: i) spatiotemporal precision in resolving reactive species generation through optical addressing; and ii) adaptive multifunctionality enabling on-demand switching between distinct active phases, thereby suppressing competing pathways and eliminating undesired side reactions. Current research paradigms remain predominantly anchored in molecular systems, whereas solid-state semiconductor architectures—with their inherent advantages in recyclability and thermal stability—suffer from critical deficiencies in excitation-selective reactivity modulation and interfacial charge transfer kinetics. Here we comment on a recent work, writing in National Science Review, reported spin–orbit coupling-mediated control over anti-Kasha photophysical pathways in semiconductors of carbonylated carbon nitride, enabling optically switchable catalytic dynamics. We further analyzed the profound implications of this work and presented a forward-looking outlook on the future development of the photoswitchable catalysis.

Keywords

anti-Kasha rule / carbon nitride / photocatalysis / photoswitchable

Cite this article

Download citation ▾
Ailin Gao, Changchao Jia. Spin–Orbit Coupling-Regulated Anti-Kasha Rule for Photoswitchable Catalysis. Energy & Environmental Materials, 2025, 8(6): e70067 DOI:10.1002/eem2.70067

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. G. DiNardi, S. Rasheed, S. S. Capomolla, M. H. Chak, I. A. Middleton, L. K. Macreadie, J. P. Violi, W. A. Donald, P. J. Lusby, J. E. Beves, J. Am. Chem. Soc. 2024, 146, 21196.

[2]

E. Benchimol, J. Tessarolo, G. H. Clever, Nat. Chem. 2024, 16, 13.

[3]

C. C. Jia, L. J. Yang, Y. Z. Zhang, X. Zhang, K. Xiao, J. S. Xu, J. Liu, ACS Appl. Mater. Interfaces 2020, 12, 53571.

[4]

C. C. Jia, B. J. Wan, W. G. Liu, L. G. Qi, X. X. Liu, X. X. Han, A. L. Gao, J. Liu, Adv. Funct. Mater. 2024, 34, 2311663.

[5]

C. Y. Xing, J. L. Ren, L. L. Fan, J. C. Zhang, M. Ma, S. W. Wu, Z. N. Liu, J. Tian, Adv. Funct. Mater. 2024, 34, 2409064.

[6]

Y. Q. Zhao, X. Wu, H. L. Wang, M. Ma, J. Tian, X. Wang, Nano Lett. 2024, 24, 16175.

[7]

J. Zhao, H. Li, Z. H. Li, S. L. Jiang, M. Q. Guan, P. Zhang, S. Shang, Z. Zhao, H. Wang, Q. Zhang, X. D. Zhang, Y. Xie, Natl. Sci. Rev. 2025, 12, nwaf062.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/