Excellent Thermoelectric and Mechanical Properties of Ce-Doped Mg3(Sb, Bi)2-Based Materials

Lijun Zhai , Hongxia Liu , Lizhong Su , Yafei Kuang , Fenghua Chen , Yan Zhang , Wenhao Fan , Zhigang Sun

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70066

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70066 DOI: 10.1002/eem2.70066
RESEARCH ARTICLE

Excellent Thermoelectric and Mechanical Properties of Ce-Doped Mg3(Sb, Bi)2-Based Materials

Author information +
History +
PDF

Abstract

The emerging n-type Mg3(Sb, Bi)2-based materials have attracted considerable attention for their excellent thermoelectric performance. Whereas, practical thermoelectric device applications require materials that exhibit not only superior thermoelectric performance but also robust mechanical properties. This work systematically investigates the mechanical and thermoelectric properties of Mg3.2-xCexSbBi0.97Te0.03. The x = 0.04 sample exhibits a Vickers hardness of up to 1012 MPa. The compressive and bending stress–strain curves show that minor doping can enhance the strength while maintaining high plasticity. The superior mechanical characteristics are attributed to dense dislocations and lattice distortions induced by Ce doping. Furthermore, the thermoelectric evaluation shows that the trivalent rare earth Ce element acts as a moderately efficient dopant, leading to increased carrier concentration to 4.55 × 1019 cm–3. However, both the electrical conductivity (σ) and Seebeck coefficient (S) gradually decrease with the increase of Ce doping, particularly at high doping levels (x = 0.04 and 0.06), leading to the slight decrease in power factor. Meanwhile, Ce doping introduces point defects, lattice distortions, and dislocations, thereby enhancing the phonon scattering and reducing the lattice thermal conductivity (кL). As a result, an ultralow кL of ~0.51 W m–1 K–1 and a peak zT of ~1.52 are achieved for the sample of x = 0.02. This work provides some insights into the synergistic enhancement of thermoelectric and mechanical properties in Mg3(Sb, Bi)2-based compounds, inspiring further exploration of their practical applications in thermoelectric devices.

Keywords

lattice thermal conductivity / mechanical property / Mg3(Sb, Bi)2 / rare earth element / thermoelectric material

Cite this article

Download citation ▾
Lijun Zhai, Hongxia Liu, Lizhong Su, Yafei Kuang, Fenghua Chen, Yan Zhang, Wenhao Fan, Zhigang Sun. Excellent Thermoelectric and Mechanical Properties of Ce-Doped Mg3(Sb, Bi)2-Based Materials. Energy & Environmental Materials, 2025, 8(6): e70066 DOI:10.1002/eem2.70066

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Pei, H. Wang, G. J. Snyder, Adv. Mater. 2012, 24, 6125.

[2]

L. Hu, Y. W. Fang, F. Qin, X. Cao, X. Zhao, Y. Luo, D. V. M. Repaka, W. Luo, A. Suwardi, T. Soldi, U. Aydemir, Y. Huang, Z. Liu, K. Hippalgaonkar, G. J. Snyder, J. Xu, Q. Yan, Nat. Commun. 2021, 12, 4793.

[3]

C. Sun, W. Li, X. Shi, Z. Bu, P. Nan, Y. Li, B. Ge, Y. Pei, J. Mater. Chem. A 2020, 8, 8345.

[4]

L. Xu, Y. Xiao, S. Wang, B. Cui, D. Wu, X. Ding, L. D. Zhao, Nat. Commun. 2022, 13, 6449.

[5]

Y. Fu, X. Ai, Z. Hu, S. Zhao, X. Lu, J. Huang, A. Huang, L. Wang, Q. Zhang, W. Jiang, Nat. Commun. 2024, 15, 9355.

[6]

S. Xu, S. Horta, A. Lawal, K. Maji, M. Lorion, M. Ibáñez, Science 2025, 387, 845.

[7]

Q. Zhang, P. Ying, A. Farrukh, Y. Gong, J. Liu, X. Huang, D. Li, M. Wang, G. Chen, G. Tang, Acta Mater. 2024, 276, 120132.

[8]

D. W. D. Liu, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z. Ge, B. Qin, L.-D. Zhao, Science 2023, 380, 841.

[9]

S. H. S. Xu, A. Lawal, K. Maji, M. Lorion, M. Ibáñez, Science 2025, 387, 845.

[10]

S. B. S. Liu, Y. Wen, J. Lou, Y. Jiang, Y. Zhu, D. Liu, Y. Li, H. Shi, S. Liu, L. Wang, J. Zheng, Z. Zhao, Y. Qin, Z. K. Liu, X. Gao, B. Qin, C. Chang, C. Chang, L.-D. Zhao, Science 2025, 387, 202.

[11]

B. B. Jiang, W. Wang, S. X. Liu, Y. Wang, C. F. Wang, Y. Chen, L. Xie, M. Y. Huang, J. Q. He, Science 2022, 377, 208.

[12]

C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z. Z. Luo, H. Lee, B. Ge, Y. L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Miredin, H. Chang, J. Im, S. P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis, I. Chung, Nat. Mater. 2021, 20, 1378.

[13]

D. B. Jia, L. Xie, W. Wang, T. Yu, S. Li, Y. Wang, Y. Xu, B. Jiang, Z. Chen, Y. Weng, J. He, Science 2024, 384, 81.

[14]

X. Shi, H. Chen, F. Hao, R. Liu, T. Wang, P. Qiu, U. Burkhardt, Y. Grin, L. Chen, Nat. Mater. 2018, 17, 421.

[15]

M. Liu, X. Zhang, W. Ding, Y. Pei, ACS Appl. Mater. Interfaces 2024, 16, 31826.

[16]

H. Hu, Y. Wang, C. Fu, X. Zhao, T. Zhu, Innovations 2022, 3, 100341.

[17]

A. N. Yu Oshim, K. Matsunag, Science 2018, 360, 772.

[18]

M. J. Tian-Ran Wei, Y. Wang, H. Chen, Z. Gao, K. Zhao, P. Qiu, Z. Shan, J. Jiang, R. Li, L. Chen, J. He, X. Shi, Science 2020, 369, 542.

[19]

P. Zhao, W. Xue, Y. Zhang, S. Zhi, X. Ma, J. Qiu, T. Zhang, S. Ye, H. Mu, J. Cheng, X. Wang, S. Hou, L. Zhao, G. Xie, F. Cao, X. Liu, J. Mao, Y. Fu, Y. Wang, Q. Zhang, Nature 2024, 631, 777.

[20]

J. Zhang, L. Song, S. H. Pedersen, H. Yin, L. T. Hung, B. B. Iversen, Nat. Commun. 2017, 8, 13901.

[21]

J. Shuai, J. Mao, S. Song, Q. Zhang, G. Chen, Z. Ren, Mater. Today Phys. 2017, 1, 74.

[22]

Y. Pei, A. D. LaLonde, H. Wang, G. J. Snyder, Energy Environ. Sci. 2012, 5, 7963.

[23]

Z. Han, Z. Gui, Y. B. Zhu, P. Qin, B. P. Zhang, W. Zhang, L. Huang, W. Liu, A Sci. Partner J. 2020, 2020, 1672051.

[24]

Z. S. Ren, J. Shuai, J. Mao, Q. Zhu, S. W. Song, Y. Z. Ni, S. Chen, Acta Mater. 2018, 143, 265.

[25]

W. Peng, G. Petretto, G.-M. Rignanese, G. Hautier, A. Zevalkink, Joule 2018, 2, 1879.

[26]

X. Li, C. Sun, K. Yang, D. Liang, X. Ye, W. Song, W. Xu, W. Zhao, Q. Zhang, Small 2024, 20, 2311478.

[27]

J. W. Li, Z. J. Han, J. C. Yu, H. L. Zhuang, H. H. Hu, B. Su, H. Z. Li, Y. Jiang, L. Chen, W. S. Liu, Q. Zheng, J. F. Li, Nat. Commun. 2023, 14, 7428.

[28]

K. Imasato, M. Wood, J. J. Kuo, G. J. Snyder, J. Mater. Chem. A 2018, 6, 19941.

[29]

X. Shi, T. Zhao, X. Zhang, C. Sun, Z. Chen, S. Lin, W. Li, H. Gu, Y. Pei, Adv. Mater. 2019, 31, 1903387.

[30]

J. Li, F. Jia, S. Zhang, S. Zheng, B. Wang, L. Chen, G. Lu, L. Wu, J. Mater. Chem. A 2019, 7, 19316.

[31]

J. Li, S. Zhang, S. Zheng, Z. Zhang, B. Wang, L. Chen, G. Lu, J. Phys. Chem. C 2019, 123, 20781.

[32]

J. E. Ni, E. D. Case, K. N. Khabir, R. C. Stewart, C. I. Wu, T. P. Hogan, E. J. Timm, S. N. Girard, M. G. Kanatzidis, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2010, 170, 58.

[33]

Z. Liu, W. Gao, X. Meng, X. Li, J. Mao, Y. Wang, J. Shuai, W. Cai, Z. Ren, J. Sui, Scr. Mater. 2017, 127, 72.

[34]

L. Zhao, X. Wang, F. Y. Fei, J. Wang, Z. Cheng, S. Dou, J. Wang, G. J. Snyder, J. Mater. Chem. A 2015, 3, 9432.

[35]

J. Lei, H. Wuliji, K. Zhao, T. R. Wei, Q. Xu, P. Li, P. Qiu, X. Shi, J. Mater. Chem. A 2021, 9, 25944.

[36]

L. Yu, X. L. Shi, Y. Mao, W. D. Liu, Z. Ji, S. Wei, Z. Zhang, W. Song, S. Zheng, Z. G. Chen, ACS Nano 2024, 18, 1678.

[37]

L. Yu, X. L. Shi, Y.q. Mao, M. Li, W. D. Liu, Z. Ji, S. Wei, Z. Zhang, W. Song, S. Zheng, Z. G. Chen, Chem. Eng. J. 2024, 482, 149051.

[38]

A. Li, Y. Wang, Y. Li, X. Yang, P. Nan, K. Liu, B. Ge, C. Fu, T. Zhu, Nat. Commun. 2024, 15, 5108.

[39]

M. Liu, X. Zhang, S. Zhang, Y. Pei, Nat. Commun. 2024, 15, 6580.

[40]

L. Zhai, J. Wang, L. Cheng, M. Lv, L. Gao, Z. Yang, Y. Li, Y. Zhang, H. Liu, Z. Sun, J. Mater. Chem. C 2025, 13, 2689.

[41]

J. W. Li, W. Liu, W. Xu, H. L. Zhuang, Z. Han, F. Jiang, P. Zhang, H. Hu, H. Gao, Y. Jiang, B. Cai, J. Pei, B. Su, Q. Li, K. Hayashi, H. Li, Y. Miyazaki, X. Cao, Q. Zheng, J. F. Li, Adv. Mater. 2023, 35, 2209119.

[42]

Z. H. Rui Shu, A. Elsukova, Y. Zhu, P. Qin, F. Jiang, J. Lu, P. O. Å. Persson, J. Palisaitis, A. le Febvrier, W. Zhang, O. Cojocaru-Mirédin, Y. Yu, P. Eklund, W. Liu, Adv. Sci. 2022, 9, 2202594.

[43]

R. D. Schmidt, E. D. Case, L. Zhao, M. G. Kanatzidis, J. Mater. Sci. 2015, 50, 1770.

[44]

C. Nagarjuna, P. Dharmaiah, K. B. Kim, S. J. Hong, Mater. Chem. Phys. 2020, 256, 123699.

[45]

L. Wang, S. Xu, J. Yang, X. Tang, X. Wang, G. Qiao, G. Liu, J. Adv. Ceram. 2025, 14, 9221029.

[46]

J. Shuai, J. Mao, S. Song, Q. Zhu, J. Sun, Y. Wang, R. He, J. Zhou, G. Chen, D. J. Singh, Energy Environ. Sci. 2017, 10, 799.

[47]

J. Zhang, L. Song, A. Mamakhel, M. R. V. Jørgensen, B. B. Iversen, Chem. Mater. 2017, 29, 5371.

[48]

J. Mao, Y. Wu, S. Song, Q. Zhu, J. Shuai, Z. Liu, Y. Pei, Z. Ren, ACS Energy Lett. 2017, 2, 2245.

[49]

G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder, C. Niu, Adv. Mater. 2020, 32, 2001537.

[50]

H. Wang, R. Gurunathan, C. Fu, R. Cui, T. Zhu, G. J. Snyder, Mater. Adv. 2022, 3, 734.

[51]

Z. Chen, X. Zhang, Y. Pei, Adv. Mater. 2018, 30, 1705617.

[52]

W. Li, S. Lin, B. Ge, J. Yang, W. Zhang, Y. Pei, Adv. Sci. 2016, 3, 1600196.

[53]

X. Shi, X. Zhang, A. Ganose, J. Park, C. Sun, Z. Chen, S. Lin, W. Li, A. Jain, Y. Pei, Mater. Today Phys. 2021, 18, 100362.

[54]

Q. Zhang, H. Li, N. S. Chauhan, L. Wang, W. Fan, S. Chen, J. Fan, Y. Miyazaki, Mater. Today Energy 2024, 44, 101656.

[55]

J. Mao, J. Shuai, S. Song, Y. Wu, R. Dally, J. Zhou, Z. Liu, J. Sun, Q. Zhang, C. Dela Cruz, S. Wilson, Y. Pei, D. J. Singh, G. Chen, C. W. Chu, Z. Ren, Proc. Natl Acad. Sci. USA 2017, 114, 10548.

[56]

H. S. Kim, W. Liu, Z. Ren, Energy Environ. Sci. 2017, 10, 69.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/