A Novel Strategy for Preparing High-Entropy Ceramics Through Full Glass Crystallization

Zhibiao Ma , Yuxuan Gao , Chenglong Ma , Licheng Zhang , Yuan Zhang , Wenlong Xu , Guoguo Zhang , Jiang Li , Shaowei Feng , Jianqiang Li

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70065

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70065 DOI: 10.1002/eem2.70065
RESEARCH ARTICLE

A Novel Strategy for Preparing High-Entropy Ceramics Through Full Glass Crystallization

Author information +
History +
PDF

Abstract

High-entropy ceramics have exhibited promising application prospects in aerospace, electronic devices, and extreme environment protection. Current powder sintering routes for preparing high-entropy ceramics are hindered by stringent powder requirements, reliance on long-term high-temperature and high-pressure synthesis, as well as compositional inhomogeneity and coarse grains. In this work, the low-temperature glass crystallization method was innovatively introduced into the preparation of high-entropy ceramics. Using garnet-structured rare-earth aluminates (RE3Al5O12, RE is rare-earth elements) as a model system, a series of single-phase RE3Al5O12 ceramics with entropy gradients were successfully synthesized through the glass crystallization method at a low temperature (1000 °C). Notably, the as-prepared (Eu0.2Gd0.2Y0.2Yb0.2Lu0.2)3Al5O12 (HEC) samples exhibited a low thermal conductivity of 3.58 W m–1 K–1 (at 300 K) and a high thermal expansion coefficient (TEC) of 10.85 × 10–6 K–1, representing a 21% reduction in thermal conductivity and a 32% increase in TEC compared to reported Yb3Al5O12 ceramics. The HEC samples also exhibited superior mechanical properties compared to most existing high-entropy ceramics, with a hardness of 22.08 GPa and a Young's modulus of 311.6 GPa. The exceptional comprehensive properties of the HEC samples make them a promising candidate material for thermal barrier coatings (TBCs) and high-temperature structural applications. This investigation confirms that high-entropy ceramics with outstanding properties can be successfully prepared using a glass crystallization method, providing a novel strategy for the low-temperature and pressureless controllable synthesis of single-phase high-entropy ceramics.

Keywords

high-entropy ceramics / low-temperature glass crystallization / low-thermal conductivity materials / thermal expansion coefficient

Cite this article

Download citation ▾
Zhibiao Ma, Yuxuan Gao, Chenglong Ma, Licheng Zhang, Yuan Zhang, Wenlong Xu, Guoguo Zhang, Jiang Li, Shaowei Feng, Jianqiang Li. A Novel Strategy for Preparing High-Entropy Ceramics Through Full Glass Crystallization. Energy & Environmental Materials, 2025, 8(6): e70065 DOI:10.1002/eem2.70065

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Zhao, H. Xiang, F. Dai, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 2019, 35, 2647.

[2]

X. Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 2004,

[3]

Y. Jiao, J. Dai, Z. Fan, J. Cheng, G. Zheng, L. Grema, J. Zhong, H. Li, D. Wang, Mater. Today 2024, 77, 92.

[4]

R. Zhang, M. J. Reece, J. Mater. Chem. A 2019, 7, 22148.

[5]

H. Chen, H. Xiang, F. Dai, J. Liu, Y. Lei, J. Zhang, Y. Zhou, J. Mater. Sci. Technol. 2019, 35, 1700.

[6]

X. Yan, L. Constantin, Y. Lu, J. F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 2018, 101, 4486.

[7]

A. Sarkar, Q. Wang, A. Schiele, M. R. Chellali, S. S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, Adv. Mater. 2019, 31, 1806236.

[8]

H. Chen, Z. Zhao, H. Xiang, F. Z. Dai, W. Xu, K. Sun, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 2020, 48, 57.

[9]

G. Wang, J. Qin, Y. Feng, B. Feng, S. Yang, Z. Wang, Y. Zhao, J. Wei, ACS Appl. Mater. Interfaces 2020, 12, 45155.

[10]

Y. Shi, Q. Xu, Z. Tian, G. Liu, C. Ma, W. Zheng, Nanoscale 2022, 1, 7817.

[11]

Y. Xing, W. Dan, Y. Fan, X. Li, J. Mater. Sci. Technol. 2022, 103, 215.

[12]

S. K. Shaw, P. Kumari, A. Sharma, N. Jatav, A. Gangwar, N. S. Anuraag, P. Rajput, S. Kavita, S. S. Meena, M. Vasundhara, I. Sinha, N. K. Prasad, Phys. B Condens. Matter 2023, 652, 414653.

[13]

C. Deng, P. Wu, H. Li, H. Zhu, Y. Chao, D. Tao, Z. Chen, M. Hua, J. Liu, J. Liu, W. Zhu, J. Colloid Interface Sci. 2023, 629, 569.

[14]

H. Nan, S. Lv, Z. Xu, Y. Feng, Y. Zhou, M. Liu, T. Wang, X. Liu, X. Hu, H. Tian, Chem. Eng. J. 2023, 452, 139501.

[15]

V. Strotkötter, O. A. Krysiak, J. Zhang, X. Wang, E. Suhr, W. Schuhmann, A. Ludwig, Chem. Mater. 2022, 34, 10291.

[16]

J. Fu, Y. Zhang, S. Feng, M. Allix, C. Genevois, E. Veron, Z. Ma, W. Xu, L. Bai, R. Fan, Y. Yang, H. Wang, J. Li, J. Adv. Ceram. 2023, 12, 2331.

[17]

J. Fu, S. Feng, Y. Guo, Y. Zhang, C. Genevois, E. Veron, M. Allix, J. Li, J. Adv. Ceram. 2023, 12, 268.

[18]

I. Milisavljevic, M. J. Pitcher, J. Li, S. Chenu, M. Allix, Y. Wu, Int. Mater. Rev. 2023, 68, 648.

[19]

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J. P. Guin, M. Nivard, J. C. Sangleboeuf, G. Matzen, M. Allix, Chem. Mater. 2013, 25, 4017.

[20]

X. Wan, G. Tan, L. Cai, J. Fu, J. Li, Y. Zhang, J. Adv. Ceram. 2024, 13, 1242.

[21]

Y. H. Wang, Z. G. Liu, J. H. Ouyang, H. Z. Liu, R. X. Zhu, Ceram. Int. 2011, 3, 2489.

[22]

M. Li, D. Wang, J. Xue, R. Jia, Ceram. Int. 2020, 46, 7019.

[23]

I. Sakaguchi, H. Haneda, J. Tanaka, T. Yanagitani, J. Am. Ceram. Soc. 1996, 79, 1627.

[24]

T. A. Owoseni, A. Rincon Romero, Z. Pala, F. Venturi, E. H. Lester, D. M. Grant, T. Hussain, Ceram. Int. 2021, 47, 23803.

[25]

Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 2020, 44, 171.

[26]

R. D. Shannon, Acta Crystallogr. A 1976, 32, 751.

[27]

Y. Wang, Y. Yuan, J. Yu, H. Wu, Y. Wu, S. Jiang, X. Liu, H. Wang, Z. Lu, Acta Metall. Sin. 2021, 57, 403.

[28]

W. C. Oliver, G. M. Pharr, J. Mater. Res. 1992, 7, 1564.

[29]

Y. Guo, J. Li, Y. Zhang, S. Feng, H. Sun, iScience 2021, 24, 102735.

[30]

H. Chen, H. Xiang, F. Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 2019, 35, 2404.

[31]

Z. Zhao, H. Chen, H. Xiang, F. Z. Dai, X. Wang, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 2019, 35, 2892.

[32]

W. Zhao, F. Yang, Z. Liu, H. Chen, Z. Shao, X. Zhang, K. Wang, L. Xue, Ceram. Int. 2021, 47, 29379.

[33]

R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stöver, J. Am. Ceram. Soc. 2000, 83, 2023.

[34]

S. Wu, S. Liu, J. Wang, B. Han, S. Shen, Z. Yu, X. Zheng, Res. Appl. Mater. Sci. 2024, 6, 16.

[35]

X. Luo, L. Luo, X. Zhao, H. Cai, S. Duan, C. Xu, S. Huang, H. Jin, S. Hou, J. Eur. Ceram. Soc. 2022, 42, 2391.

[36]

X. Wang, H. Xiang, X. Sun, J. Liu, F. Hou, Y. Zhou, J. Mater. Res. 2014, 29, 2673.

[37]

F. Li, L. Zhou, J. X. Liu, Y. Liang, G. J. Zhang, J. Adv. Ceram. 2019, 8, 576.

[38]

J. Yang, Y. Han, M. Shahid, W. Pan, M. Zhao, W. Wu, C. Wan, Scr. Mater. 2018, 149, 49.

[39]

K. W. Schlichting, N. P. Padture, P. G. Klemens, J. Mater. Sci. 2001, 36, 3003.

[40]

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 2007, 315, 351.

[41]

J. Yang, X. Qian, W. Pan, R. Yang, Z. Li, Y. Han, M. Zhao, M. Huang, C. Wan, Adv. Mater. 2019, 3, 1808222.

[42]

D. G. Cahill, S. K. Watson, R. O. Pohl, Phys. Rev. B 1992, 46, 6131.

[43]

T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G. J. Snyder, A. Harnwunggmoung, T. Sugahara, Y. Ohishi, H. Muta, S. Yamanaka, Adv. Mater. 2012, 24, 3622.

[44]

G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, C. Uher, Phys. Rev. Lett. 1998, 80, 3551.

[45]

J. L. Braun, C. M. Rost, M. Lim, A. Giri, D. H. Olson, G. N. Kotsonis, G. Stan, D. W. Brenner, J. P. Maria, P. E. Hopkins, Adv. Mater. 2018, 30, 1805004.

[46]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, J. Appl. Phys. 2005, 98, 103514.

[47]

S.-L. Shang, R. Gong, M. C. Gao, D. C. Pagan, Z.-K. Liu, Scr. Mater. 2024, 250, 116200.

[48]

A. K. Kirubaharan, P. Kuppusami, S. Chakravarty, D. Ramachandran, A. Singh, J. Alloys Compd. 2017, 722, 585.

[49]

P. N. Quested, R. F. Brooks, L. Chapman, R. Morrell, Y. Youssef, K. C. Mills, Mater. Sci. Technol. 2009, 25, 154.

[50]

G. A. Dosovitskiy, S. V. Samoilenkov, A. R. Kaul, D. P. Rodionov, Int. J. Thermophys. 2009, 30, 1931.

[51]

N. P. Padture, M. Gell, E. H. Jordan, Science 2002, 296, 280.

[52]

X. Ren, W. Pan, Acta Mater. 2014, 69, 397.

[53]

P. Chantikul, G. R. Anstis, B. R. Lawn, D. B. Marshall, J. Am. Ceram. Soc. 1981, 64, 539.

[54]

J. Leitner, P. Voňka, D. Sedmidubský, P. Svoboda, Thermochim. Acta 2010, 497, 7.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/