Vertically Integrated In-Sensor Processing System Based on Three-Dimensional Reservoir for Artificial Tactile System

Taeseung Jung , Dohan Kim , Giuk Kim , Seungyeob Kim , Hyojun Choi , Minyoung Jo , Yunjeong Kim , Jinho Ahn , Seong-Ook Jung , Sanghun Jeon

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70063

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70063 DOI: 10.1002/eem2.70063
RESEARCH ARTICLE

Vertically Integrated In-Sensor Processing System Based on Three-Dimensional Reservoir for Artificial Tactile System

Author information +
History +
PDF

Abstract

Next-generation artificial tactile systems demand seamless integration with neuromorphic architectures to support on-edge computation and high-fidelity sensory signal processing. Despite significant advancements, current research remains predominantly focused on optimizing individual sensor elements, and systems utilizing single neuromorphic components encounter inherent limitations in enhancing overall functionality. Here, we present a vertically integrated in-sensor processing platform, which combines a three-dimensional antiferroelectric field-effect transistor (AFEFET) device with an aluminum nitride (AlN) piezoelectric sensor. This innovative architecture leverages a Zr-rich, leaky antiferroelectric HZO film—a novel material for physical reservoir computing (PRC) devices capable of responding to external stimuli within the microsecond-to-millisecond range. We further demonstrate the 3D AFEFET's adaptability by tuning its discharge current via structural modifications, enabling sophisticated multilayered processing. As an integrated in-sensor processing unit, the 3D AFEFET and AlN sensor array surpass a comparable 2D configuration in both pattern recognition and information density. Our findings showcase a pioneering prototype for future artificial tactile systems, demonstrating the transformative potential of 3D AFEFET PRC devices for advanced neuromorphic applications.

Keywords

anti-ferroelectric HZO / artificial tactile system / in-sensor processing / neuromorphic devices / reservoir computing

Cite this article

Download citation ▾
Taeseung Jung, Dohan Kim, Giuk Kim, Seungyeob Kim, Hyojun Choi, Minyoung Jo, Yunjeong Kim, Jinho Ahn, Seong-Ook Jung, Sanghun Jeon. Vertically Integrated In-Sensor Processing System Based on Three-Dimensional Reservoir for Artificial Tactile System. Energy & Environmental Materials, 2025, 8(6): e70063 DOI:10.1002/eem2.70063

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Shi, F. Wang, J. Tian, S. Li, E. Fu, J. Nie, R. Lei, Y. Ding, X. Chen, Z. L. Wang, Sci. Adv. 2021, 7, eabe2943.

[2]

T. Chen, M. Zhao, Q. Shi, Z. Yang, H. Liu, L. Sun, J. Ouyang, C. Lee, Nano Energy 2018, 51, 162.

[3]

Q. Shi, Z. Zhang, T. Chen, C. Lee, Nano Energy 2019, 62, 355.

[4]

S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba, W. Matusik, Nature 2019, 569, 698.

[5]

A.-M. Georgarakis, M. Xiloyannis, P. Wolf, R. Riener, Nat. Mach. Intell. 2022, 4, 574.

[6]

J. Wang, X. Liu, R. Li, Y. Fan, Trends Biotechnol. 2023, 41, 951.

[7]

K. Y. Chun, Y. J. Son, E. S. Jeon, S. Lee, C. S. Han, Adv. Mater. 2018, 30, 1706299.

[8]

M. L. Jin, S. Park, Y. Lee, J. H. Lee, J. Chung, J. S. Kim, J. S. Kim, S. Y. Kim, E. Jee, D. W. Kim, J. W. Chung, S. G. Lee, D. Choi, H. T. Jung, D. H. Kim, Adv. Mater. 2017, 29, 1605973.

[9]

H. Wang, B. Sun, S. S. Ge, J. Su, M. L. Jin, NPJ Flex. Electron. 2024, 8, 28.

[10]

H. Seok, D. Lee, S. Son, H. Choi, G. Kim, T. Kim, Adv. Electron. Mater. 2024, 10, 2300839.

[11]

H. Kwak, N. Kim, S. Jeon, S. Kim, J. Woo, Nano Converg. 2024, 11, 9.

[12]

F. Zhou, Y. Chai, Nat. Electron. 2020, 3, 664.

[13]

H. Zhang, F. Liang, L. Yang, Z. Gao, K. Liang, S. Liu, Y. Ye, H. Yu, W. Chen, Y. Kang, H. Sun, Adv. Mater. 2024, 36, 2405874.

[14]

Z. Su, Y. Yan, M. Sun, Z. Xuan, H. Cheng, D. Luo, Z. Gao, H. Yu, H. Zhang, C. Zuo, H. Sun, Adv. Funct. Mater. 2024, 34, 2316802.

[15]

M. Ismail, M. Rasheed, C. Mahata, M. Kang, S. Kim, Nano Converg. 2023, 10, 33.

[16]

X. Liang, J. Tang, Y. Zhong, B. Gao, H. Qian, H. Wu, Nat. Electron. 2024, 7, 193.

[17]

M. Yan, C. Huang, P. Bienstman, P. Tino, W. Lin, J. Sun, Nat. Commun. 2024, 15, 2056.

[18]

Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, H. Wu, Nat. Commun. 2021, 12, 408.

[19]

Y. Zhong, J. Tang, X. Li, X. Liang, Z. Liu, Y. Li, Y. Xi, P. Yao, Z. Hao, B. Gao, H. Qian, H. Wu, Nat. Electron. 2022, 5, 672.

[20]

C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, W. D. Lu, Nat. Commun. 2017, 8, 2204.

[21]

L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo, S. Zheng, S. Lee, W. J. Yu, B. S. Kong, H. Yang, Sci. Adv. 2021, 7, eabg1455.

[22]

A. H. Jaafar, L. Shao, P. Dai, T. Zhang, Y. Han, R. Beanland, N. T. Kemp, P. N. Bartlett, A. L. Hector, R. Huang, Nanoscale 2022, 14, 17170.

[23]

K. Toprasertpong, E. Nako, Z. Wang, R. Nakane, M. Takenaka, S. Takagi, Comms. Eng. 2022, 1, 21.

[24]

M. Tang, X. Zhan, S. Wu, M. Bai, Y. Feng, G. Zhao, J. Wu, J. Chai, H. Xu, X. Wang, J. Chen, IEEE Electron Device Lett. 2022, 43, 1555.

[25]

S. Takagi, K. Toprasertpong, E. Nako, R. Suzuki, S.-Y. Min, M. Takenaka, 2023 International Electron Devices Meeting (IEDM), IEEE, San Francisco, CA 2023.

[26]

R. Cao, X. Zhang, S. Liu, J. Lu, Y. Wang, H. Jiang, Y. Yang, Y. Sun, W. Wei, J. Wang, H. Xu, Q. Li, Q. Liu, Nat. Commun. 2022, 13, 7018.

[27]

S. Choi, T. Moon, G. Wang, J. J. Yang, Nano Converg. 2023, 10, 58.

[28]

J. Lee, K. Yang, J. Y. Kwon, J. E. Kim, D. I. Han, D. H. Lee, J. H. Yoon, M. H. Park, Nano Converg. 2023, 10, 55.

[29]

M. Pei, Y. Zhu, S. Liu, H. Cui, Y. Li, Y. Yan, Y. Li, C. Wan, Q. Wan, Adv. Mater. 2023, 35, 2305609.

[30]

J. Yu, Y. Li, W. Sun, W. Zhang, Z. Gao, D. Dong, 2021 Symposium on VLSI Technology, IEEE, Kyoto, Japan 2021.

[31]

K. Ota, M. Yamaguchi, S. Kabuyanagi, S. Fujii, M. Saitoh, M. Yoshikawa, IEEE Trans. Electron Dev. 2022, 69, 7089.

[32]

A. Wali, S. Das, Adv. Funct. Mater. 2024, 34, 2308129.

[33]

X. Yan, J. H. Qian, V. K. Sangwan, M. C. Hersam, Adv. Mater. 2022, 34, 2108025.

[34]

L. Liu, W. Xu, Y. Ni, Z. Xu, B. Cui, J. Liu, H. Wei, W. Xu, ACS Nano 2022, 16, 2282.

[35]

H. Wan, J. Zhao, L.-W. Lo, Y. Cao, N. Sepúlveda, C. Wang, ACS Nano 2021, 15, 14587.

[36]

J. Yu, G. Gao, J. Huang, X. Yang, J. Han, H. Zhang, Y. Chen, C. Zhao, Q. Sun, Z. L. Wang, Nat. Commun. 2021, 12, 1581.

[37]

J. Yu, S. R. Kulkarni, H. V. Poor, EURASIP J. Adv. Signal Process. 2013,

[38]

R. Chen, H. Yang, R. Li, G. Yu, Y. Zhang, J. Dong, D. Han, Z. Zhou, P. Huang, L. Liu, X. Liu, J. Kang, Sci. Adv. 2024, 10, eadl1299.

[39]

W. Sun, W. Zhang, J. Yu, Y. Li, Z. Guo, J. Lai, IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), IEEE, Honolulu, HI 2022.

[40]

D. Kim, S. Lee, Y. Lee, Y. Park, J. Lee, S. Kim, Adv. Funct. Mater. 2024, 34, 2409095.

[41]

E. Nako, K. Toprasertpong, R. Nakane, M. Takenaka, S. Takagi, EEE Trans. Electron Dev. 2023, 70, 5657.

[42]

L. Li, H. Xiang, H. Zheng, Y. C. Chien, N. T. Duong, J. Gao, K. W. Ang, Nanoscale Horiz. 2024, 9, 752.

[43]

P. Zhang, X. Ma, Y. Dong, Z. Wu, D. Chen, T. Cui, J. Liu, G. Liu, X. Li, Appl. Phys. Lett. 2023, 123, 122104.

[44]

S. Lee, D. Kim, S. Kim, Ceram. Int. 2024, 50, 36495.

[45]

X. Wang, 2022 International Electron Devices Meeting (IEDM), IEEE, San Francisco, CA 2022.

[46]

L. Appeltant, M. C. Soriano, G. van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, I. Fischer, Nat. Commun. 2011, 2, 468.

[47]

Z. Li, Z. Li, W. Tang, J. Yao, Z. Dou, J. Gong, Y. Li, B. Zhang, Y. Dong, J. Xia, L. Sun, P. Jiang, X. Cao, R. Yang, X. Miao, R. Yang, Nat. Commun. 2024, 15, 7275.

[48]

K. Yoshimura, T. Hasegawa, Jpn. J. Appl. Phys. 2024, 63, 03SP17.

[49]

S. Choi, J. Shin, G. Park, J. S. Eo, J. Jang, J. J. Yang, G. Wang, Nat. Commun. 2024, 15, 2044.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/