AI-Enhanced High-Resolution Functional Imaging Reveals Trap States and Charge Carrier Recombination Pathways in Perovskite

Qi Shi , Tönu Pullerits

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70062

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70062 DOI: 10.1002/eem2.70062
RESEARCH ARTICLE

AI-Enhanced High-Resolution Functional Imaging Reveals Trap States and Charge Carrier Recombination Pathways in Perovskite

Author information +
History +
PDF

Abstract

Understanding and managing charge carrier recombination dynamics is crucial for optimizing the performance of metal halide perovskite optoelectronic devices. In this work, we introduce a machine learning-assisted intensity-modulated two-photon photoluminescence microscopy approach for quantitatively mapping recombination processes in MAPbBr3 perovskite microcrystalline films at micrometer-scale resolution. To enhance model accuracy, a balanced classification sampling strategy was applied during the machine learning optimization stage. The trained regression chain model accurately predicts key physical parameters—exciton generation rate (G), initial trap concentration (NTR), and trap energy barrier (Ea)—across a 576-pixel spatial mapping. These parameters were then used to solve a system of coupled ordinary differential equations, yielding spatially resolved simulations of carrier populations and recombination behaviors at steady-state photoexcitation. The resulting maps reveal pronounced local variations in exciton, electron, hole, and trap populations, as well as photoluminescence and nonradiative losses. Correlation analysis identifies three distinct recombination regimes: 1) a trap-filling regime predominated by nonradiative recombination, 2) a crossover regime, and 3) a band-filling regime with significantly enhanced radiative efficiency. A critical trap density threshold (~1017 cm-3) marks the transition between these regimes. This work demonstrates machine learning-assisted intensity-modulated two-photon photoluminescence microscopy as a powerful framework for diagnosing carrier dynamics and guiding defect passivation strategies in perovskite materials.

Keywords

charge carrier dynamics / intensity modulation two-photon excited photoluminescence (IM2PM) / machine learning / nonradiative recombination / trap states

Cite this article

Download citation ▾
Qi Shi, Tönu Pullerits. AI-Enhanced High-Resolution Functional Imaging Reveals Trap States and Charge Carrier Recombination Pathways in Perovskite. Energy & Environmental Materials, 2025, 8(6): e70062 DOI:10.1002/eem2.70062

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Hodes, Science 1979, 2013, 317.

[2]

Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html (accessed: November 2023).

[3]

J. Kim, J. Heo, G. Park, S. Woo, C. Cho, Nature 2022, 611, 688.

[4]

X. Chang, J. Fang, Y. Fan, T. Luo, H. Su, Y. Zhang, J. Lu, L. Tsetseris, T. D. Anthopoulos, Adv. Mater. 2020, 32, 2001243.

[5]

S. D. Stranks, ACS Energy Lett. 2017, 2, 1515.

[6]

J. Huang, Y. Yuan, Y. Shao, Y. Yan, Nat. Rev. Mater. 2017, 2, 17042.

[7]

S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, H. J. Snaith, Phys. Rev. Appl. 2014, 2, 034007.

[8]

M. J. Trimpl, A. D. Wright, K. Schutt, L. R. V. Buizza, Z. Wang, M. B. Johnston, H. J. Snaith, P. Müller-Buschbaum, L. M. Herz, Adv. Funct. Mater. 2020, 30, 2004312.

[9]

J. Chen, K. Žídek, P. Chábera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, T. Pullerits, J. Phys. Chem. Lett. 2017, 8, 2316.

[10]

K. Zheng, K. Žídek, M. Abdellah, M. E. Messing, M. J. Al-Marri, T. Pullerits, J. Phys. Chem. C 2016, 120, 3077.

[11]

C. Stavrakas, A. A. Zhumekenov, R. Brenes, M. Abdi-Jalebi, V. Bulović, O. M. Bakr, E. S. Barnard, S. D. Stranks, Energy Environ. Sci. 2018, 11, 2846.

[12]

D. W. DeQuilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, D. S. Ginger, Science 1979 2015, 348, 683.

[13]

Q. Shi, S. Ghosh, A. S. Sarkar, P. Kumar, Z. Wang, S. K. Pal, T. Pullerits, K. J. Karki, J. Phys. Chem. C 2018, 122, 3818.

[14]

B. Yang, J. Chen, Q. Shi, Z. Wang, M. Gerhard, A. Dobrovolsky, I. G. Scheblykin, K. J. Karki, K. Han, T. Pullerits, J. Phys. Chem. Lett. 2018, 9, 5017.

[15]

P. Kumar, Q. Shi, K. J. Karki, J. Phys. Chem. C 2019, 123, 13444.

[16]

Q. Shi, P. Kumar, T. Pullerits, ACS Phys. Chem. Au. 2023, 3, 467.

[17]

X. Du, L. Lüer, T. Heumueller, J. Wagner, C. Berger, T. Osterrieder, J. Wortmann, S. Langner, U. Vongsaysy, M. Bertrand, N. Li, T. Stubhan, J. Hauch, C. J. Brabec, Joule 2021, 5, 495.

[18]

Q. Shi, T. Pullerits, ACS Photonics 2024, 11, 1093.

[19]

Z. Zhang, J. Wang, Y. Zhang, J. Xu, R. Long, J. Phys. Chem. Lett. 2022, 13, 10734.

[20]

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 2018, 559, 547.

[21]

S. G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A. J. Barker, F. De Angelis, A. Petrozza, S. G. Motti, S. Martani, R. Sorrentino, A. J. Barker, A. Petrozza, D. Meggiolaro, F. De Angelis, Adv. Mater. 2019, 31, 1901183.

[22]

A. Mannodi-Kanakkithodi, J. S. Park, N. Jeon, D. H. Cao, D. J. Gosztola, A. B. F. Martinson, M. K. Y. Chan, Chem. Mater. 2019, 31, 3599.

[23]

J. M. Ball, A. Petrozza, Nat. Energy 2016,

[24]

S. Ghosh, S. K. Pal, K. J. Karki, T. Pullerits, ACS Energy Lett. 2017, 2, 2133.

[25]

J. M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy Environ. Sci. 2015, 8, 2118.

[26]

E. Mosconi, D. Meggiolaro, H. J. Snaith, S. D. Stranks, F. De Angelis, Energy Environ. Sci. 2016, 9, 3180.

[27]

Y. Tian, M. Peter, E. Unger, M. Abdellah, K. Zheng, T. Pullerits, A. Yartsev, V. Sundström, I. G. Scheblykin, Phys. Chem. Chem. Phys. 2015, 17, 24978.

[28]

M. D. McCluskey, M. D. McCluskey, E. E. Haller, E. E. Haller, Dopants and Defects in Semiconductors, CRC Press, Boca Raton, FL 2018.

[29]

Q. Zhou, B. Wang, R. Meng, J. Zhou, S. Xie, X. Zhang, J. Wang, S. Yue, B. Qin, Adv. Funct. Mater. 2020, 30, 2000550.

[30]

D. Meggiolaro, S. G. Motti, E. Mosconi, A. J. Barker, J. Ball, C. A. R. Perini, F. Deschler, A. Petrozza, F. De Angelis, Energy Environ. Sci. 2018, 11, 702.

[31]

J. Dacuña, A. Salleo, Phys. Rev. B 2011, 84, 195209.

[32]

G. Landi, S. Pagano, H. C. Neitzert, C. Mauro, C. Barone, Energies (Basel) 2023, 16, 1296.

[33]

D. Yang, W. Ming, H. Shi, L. Zhang, M. H. Du, Chem. Mater. 2016, 28, 4349.

[34]

N. Droseros, G. Longo, J. C. Brauer, M. Sessolo, H. J. Bolink, N. Banerji, ACS Energy Lett. 2018, 3, 1458.

[35]

D. M. Niedzwiedzki, M. Kouhnavard, Y. Diao, J. M. D'Arcy, P. Biswas, Phys. Chem. Chem. Phys. 2021, 23, 13011.

[36]

Y. Yang, M. Yang, Z. Li, R. Crisp, K. Zhu, M. C. Beard, J. Phys. Chem. Lett. 2015, 6, 4688.

[37]

T. Leijtens, G. E. Eperon, A. J. Barker, G. Grancini, W. Zhang, J. M. Ball, A. R. Srimath Kandada, H. J. Snaith, A. Petrozza, Energy Environ. Sci. 2016, 9, 3472.

[38]

G.-J. A. H. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila, H. J. Bolink, Adv. Mater. 2015, 27, 1837.

[39]

A. Kiligaridis, P. A. Frantsuzov, A. Yangui, S. Seth, J. Li, Q. An, Y. Vaynzof, I. G. Scheblykin, Nat. Commun. 2021, 12, 3329.

[40]

S. Feldmann, S. Macpherson, S. P. Senanayak, M. Abdi-Jalebi, J. P. H. Rivett, G. Nan, G. D. Tainter, T. A. S. Doherty, K. Frohna, E. Ringe, R. H. Friend, H. Sirringhaus, M. Saliba, D. Beljonne, S. D. Stranks, F. Deschler, Nat. Photonics 2019, 14, 123.

[41]

Z. Andaji-Garmaroudi, M. Anaya, A. J. Pearson, S. D. Stranks, Adv. Energy Mater. 2020, 10, 1903109.

[42]

R. J. Elliott, Phys. Rev. 1957, 108, 1384.

[43]

C. L. Davies, M. R. Filip, J. B. Patel, T. W. Crothers, C. Verdi, A. D. Wright, R. L. Milot, F. Giustino, M. B. Johnston, L. M. Herz, Nat. Commun. 2018, 9, 293.

[44]

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, V. Sundström, J. Am. Chem. Soc. 2014, 136, 5189.

[45]

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, T. Pullerits, J. Phys. Chem. Lett. 2015, 6, 2969.

[46]

V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, Nat. Commun. 2014, 5, 1.

[47]

Q. Shi, S. Ghosh, P. Kumar, L. C. Folkers, S. K. Pal, T. Pullerits, K. J. Karki, J. Phys. Chem. C 2018, 122, 21817.

[48]

V. Al Osipov, X. Shang, T. Hansen, T. Pullerits, K. J. Karki, Phys. Rev. A 2016, 94, 053845.

[49]

S. Liu, H. Hua, Opt. Express 2011, 19, 353.

[50]

Field Guide to Microscopy, Tkaczyk | Publications | SPIE 2010, https://spie.org/publications/book/798239 (accessed: November 2024).

[51]

V. M. Le Corre, E. A. Duijnstee, O. El Tambouli, J. M. Ball, H. J. Snaith, J. Lim, L. J. A. Koster, ACS Energy Lett. 2021, 6, 1087.

[52]

B. Wenger, P. K. Nayak, X. Wen, S. V. Kesava, N. K. Noel, H. J. Snaith, Nat. Commun. 2017, 8, 590.

[53]

G. Han, T. M. Koh, S. S. Lim, T. W. Goh, X. Guo, S. W. Leow, R. Begum, T. C. Sum, N. Mathews, S. Mhaisalkar, ACS Appl. Mater. Interfaces 2017, 9, 21292.

[54]

A. Nur'aini, S. Lee, I. Oh, JECST 2021, 13, 71.

[55]

M. J. Dresser, J. Appl. Phys. 1968, 39, 338.

[56]

S. Ghosh, Q. Shi, B. Pradhan, P. Kumar, Z. Wang, S. Acharya, S. K. Pal, T. Pullerits, K. J. Karki, J. Phys. Chem. Lett. 2018, 9, 4245.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/