Cation-Anion Coordination for Covalent Anchoring of Manganese Oxides to Stabilize Mn Ion Valence and Suppress Jahn-Teller Distortion and Dissolution

Xiaojie Lu , Lei Chen , Wenxiao Li , Xiaoliang Zhang , Weili Chi , Shulong Li , Chunxia Wang , Yong Liu , Xiangwu Zhang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70061

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70061 DOI: 10.1002/eem2.70061
RESEARCH ARTICLE

Cation-Anion Coordination for Covalent Anchoring of Manganese Oxides to Stabilize Mn Ion Valence and Suppress Jahn-Teller Distortion and Dissolution

Author information +
History +
PDF

Abstract

The increasing demand for high-capacity energy storage, spurred by the growth of renewable energy, has accelerated the pursuit of cost-effective and sustainable aqueous zinc-ion batteries as a viable alternative to traditional lithium-ion batteries. In this study, a cation-anion coordination cathode material (Zn-MnO2FX) is proposed, which regulates the central valence state of Mn ions by covalently anchoring manganese oxides with Zn ions and F ions to inhibit Jahn-Teller distortion and manganese dissolution. Density Functional Theory calculations elucidate the intercalation of Zn2+ extends the MnO2 layer spacing, reduces ion diffusion barriers, and accelerates ion diffusion, while F ions repair defects and enhance the electronic conductivity of MnO2, which stabilizes the cathodes and prolongs the life span of batteries. The co-insertion of Zn2+/H+ in MnO2 and the auxiliary effect of Zn4SO4·(OH)6·xH2O on dissolution/deposition were elucidated by analyzing the changes in structure, morphology, and impedance during the cycling process. The Zn-MnO2Fx cathode exhibits a high reversible capacity of 365.5 mA h g–1 at 0.1 A g–1, with remarkable capacity retention of 96.7% after 1000 cycles at 1 A g–1. The initial specific capacity of the flexible yarn battery reaches 112.5 mA h g–1 at 0.1 A g–1. This work adeptly addresses the kinetic-stability balance in cathode materials, offering a pioneering strategy for sustainable and efficient large-scale energy storage.

Keywords

cathode / flexible electrode design / heterointerface engineering / Zn/MnO2 battery / Zn-MnO2Fx

Cite this article

Download citation ▾
Xiaojie Lu, Lei Chen, Wenxiao Li, Xiaoliang Zhang, Weili Chi, Shulong Li, Chunxia Wang, Yong Liu, Xiangwu Zhang. Cation-Anion Coordination for Covalent Anchoring of Manganese Oxides to Stabilize Mn Ion Valence and Suppress Jahn-Teller Distortion and Dissolution. Energy & Environmental Materials, 2025, 8(6): e70061 DOI:10.1002/eem2.70061

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Jo, N. Voronina, Y. K. Sun, S. T. Myung, Adv. Mater. 2021, 33, 2006019.

[2]

J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang, X. Zhang, J. Qin, Z. S. Wu, Adv. Energy Mater. 2021, 11, 2101299.

[3]

M. Song, H. Tan, D. L. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.

[4]

L. H. Ren, G. X. Yu, H. Xu, W. J. Wang, Y. Q. Jiang, M. Y. Ji, S. J. Li, ACS Sustain. Chem. Eng. 2021, 9, 12223.

[5]

C. You, R. Wu, X. Yuan, L. Liu, J. Ye, L. Fu, P. Han, Y. Wu, Energy Environ. Sci. 2023, 16, 5096.

[6]

X. Gao, H. W. Wu, W. J. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G. Q. Zou, H. S. Hou, X. B. Ji, Small 2020, 16, 1905842.

[7]

Y. K. Yuan, J. Y. Zhu, Y. Wang, S. N. Li, P. J. Jin, Y. Chen, J. Alloys Compd. 2020, 830, 154524.

[8]

Y. N. Zhang, T. Y. Mao, L. F. Cheng, H. Wu, R. Wu, L. X. Zheng, J. Alloys Compd. 2017, 729, 655.

[9]

Y. Shuo, Z. Yuwei, Z. Chunyi, Energy Mater. 2025, 5, 500021.

[10]

X. Yong, H. Wenjie, L. Jun, H. Renzong, O. Liuzhang, Y. Lichun, Z. Min, Energy Mater. 2024, 4, 400005.

[11]

D. Wang, Z. M. Liu, X. W. Gao, Q. F. Gu, L. K. Zhao, W. B. Luo, J. Energy Storage 2023, 72, 108740.

[12]

Y. Q. Liu, M. J. Nan, Z. C. Zhao, B. Shen, L. Qiao, H. M. Zhang, X. K. Ma, Chem. Eng. J. 2023, 465, 142602.

[13]

X. H. Zheng, Y. C. Wang, Y. Xu, T. Ahmad, Y. Yuan, J. F. Sun, R. H. Luo, M. M. Wang, M. Y. Chuai, N. Chen, T. L. Jiang, S. Liu, W. Chen, Nano Lett. 2021, 21, 8863.

[14]

H. Bai, S. C. Liang, T. Wei, Q. H. Zhou, M. J. Shi, Z. M. Jiang, J. Feng, M. Y. Zhang, Z. J. Fan, J. Power Sources 2022, 523, 231032.

[15]

Q. G. Li, C. Wang, Y. Zhu, W. Z. Du, W. X. Liu, M. Yao, Y. Q. Wang, Y. M. Qian, S. J. Feng, Chem. Eng. J. 2024, 485, 150077.

[16]

C. L. Zuo, F. Y. Xiong, J. J. Wang, Y. K. An, L. Zhang, Q. Y. An, Adv. Funct. Mater. 2022, 32, 2202975.

[17]

V. Mathew, B. Sambandam, S. Kim, S. Kim, S. Park, S. Lee, M. H. Alfaruqi, V. Soundharrajan, S. Islam, D. Y. Putro, J. Y. Hwang, Y. K. Sun, J. Kim, ACS Energy Lett. 2020, 5, 2376.

[18]

X. D. Zhu, Z. Y. Cao, W. J. Wang, H. J. Li, J. C. Dong, S. P. Gao, D. X. Xu, L. Li, J. F. Shen, M. X. Ye, ACS Nano 2021, 15, 2971.

[19]

X. K. Fan, K. X. Xiang, W. Zhou, W. N. Deng, H. Zhu, L. Chen, H. Chen, Carbon Energy 2024, 6, e536.

[20]

Q. Chen, J. L. Jin, M. D. Song, X. Y. Zhang, H. Li, J. L. Zhang, G. Y. Hou, Y. P. Tang, L. Q. Mai, L. Zhou, Adv. Mater. 2022, 34, 35137465.

[21]

J. H. Zhang, W. B. Li, J. J. Wang, X. H. Pu, G. N. Zhang, S. Wang, N. Wang, X. F. Li, Angew. Chem. Int. Ed. Engl. 2023, 62, e202216290.

[22]

Y. Yang, X. S. Su, L. Zhang, P. Kerns, L. Achola, V. Hayes, R. Quardokus, S. L. Suib, J. He, ChemCatChem 2019, 11, 1689.

[23]

T. Uyama, K. Mukai, I. Yamada, Inorg. Chem. 2019, 58, 6684.

[24]

J. L. Xu, X. H. Hu, M. A. Alam, G. Muhammad, Y. K. Lv, M. H. Wang, C. J. Zhu, W. L. Xiong, RSC Adv. 2021, 11, 35280.

[25]

Y. X. Gao, A. J. Zhou, J. Min, C. B. Yu, Catal. Lett. 2024, 154, 1173.

[26]

F. M. Wang, G. W. Xu, C. C. Jin, Chem. J. Chin. Univ. Chin. 2018, 39, 530.

[27]

L. T. Shan, Y. R. Wang, S. Q. Liang, B. Y. Tang, Y. Q. Yang, Z. Q. Wang, B. A. Lu, J. Zhou, InfoMat 2021, 3, 1028.

[28]

M. Xie, M. X. Lin, C. Feng, Z. J. Liu, Y. C. Xu, N. A. Wang, X. Zhang, Y. Jiao, J. R. Chen, J. Colloid Interface Sci. 2023, 645, 400.

[29]

Y. Liu, S. Guo, W. Ling, M. Cui, H. Lei, J. Wang, W. Li, Q. Liu, L. Cheng, Y. Huang, J. Energy Chem. 2023, 76, 11.

[30]

H. Tang, W. Chen, N. Li, Z. Hu, L. Xiao, Y. Xie, L. Xi, L. Ni, Y. Zhu, Energy Storage Mater. 2022, 48, 335.

[31]

H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai, M. Xu, H. J. Fan, S. J. Bao, Adv. Mater. 2022, 34, e2109092.

[32]

X. Lu, L. Chen, R. Orenstein, W. Li, W. Chi, M. Peng, C. Wang, Y. Liu, X. Zhang, Small 2024, 20, 2406680.

[33]

N. Li, L. Yu, J. Xi, Small 2021, 17, e2103001.

[34]

J. Lin, Y. Wang, M. Chen, J. Lu, H. Mi, J. Chen, C. He, D. Ma, P. Zhang, Adv. Energy Mater. 2024, 14, 2401275.

[35]

F. Gao, B. Mei, X. Xu, J. Ren, D. Zhao, Z. Zhang, Z. Wang, Y. Wu, X. Liu, Y. Zhang, Chem. Eng. J. 2022, 448, 137742.

[36]

L. Gou, K. L. Mou, X. Y. Fan, M. J. Zhao, Y. Wang, D. Xue, D. L. Li, Dalton Trans. 2020, 49, 711.

[37]

H. Zhou, Z. Li, K. Wang, M. Gao, S. Ding, J. Mater. Chem. A 2019, 7, 1779.

[38]

X. Yang, X. Zheng, Z. Yan, Z. Huang, Y. Yao, H. Li, Y. Kuang, H. Zhou, Int. J. Hydrog. Energy 2021, 46, 17267.

[39]

Q.-L. Gao, D.-S. Li, X.-M. Liu, Y.-F. Wang, W.-L. Liu, M.-M. Ren, F.-G. Kong, S.-J. Wang, R.-C. Zhou, Electrochim. Acta 2020, 335, 135642.

[40]

B. Yang, X. W. Cao, S. H. Wang, N. Wang, C. L. Sun, Electrochim. Acta 2021, 385, 138447.

[41]

Y. T. Xu, J. J. Zhu, J. Z. Feng, Y. Wang, X. X. Wu, P. J. Ma, X. Zhang, G. Z. Wang, X. B. Yan, Energy Storage Mater. 2021, 38, 299.

[42]

B. Lee, H. R. Seo, H. R. Lee, C. S. Yoon, J. H. Kim, K. Y. Chung, B. W. Cho, S. H. Oh, ChemSusChem 2016, 9, 2948.

[43]

J.-S. Park, S. E. Wang, D. S. Jung, J.-K. Lee, Y. C. Kang, Chem. Eng. J. 2022, 446, 137266.

[44]

X. Pu, X. Li, L. Wang, H. Maleki Kheimeh Sari, J. Li, Y. Xi, H. Shan, J. Wang, W. Li, X. Liu, S. Wang, J. Zhang, Y. Wu, ACS Appl. Mater. Interfaces 2022, 14, 21159.

[45]

J. J. Wang, J. G. Wang, H. Y. Liu, Z. Y. You, C. G. Wei, F. Y. Kang, J. Power Sources 2019, 438, 226951.

[46]

Z. Zhong, J. Li, L. Li, X. Xi, Z. Luo, G. Fang, S. Liang, X. Wang, Energy Storage Mater. 2022, 46, 165.

[47]

H. Li, Z. Huang, B. Chen, Y. Jiang, C. Li, W. Xiao, X. Yan, J. Power Sources 2022, 527, 231198.

[48]

Z. Y. Feng, Z. Y. Gao, Z. Y. Xue, M. Yang, X. Y. Zhao, J. Electron. Mater. 2022, 51, 6041.

[49]

O. Fitz, C. Bischoff, M. Bauer, H. Gentischer, K. P. Birke, H. M. Henning, D. Biro, ChemElectroChem 2021, 8, 3553.

[50]

Y. F. Huang, J. Mou, W. B. Liu, X. L. Wang, L. B. Dong, F. Y. Kang, C. J. Xu, Nano Micro Lett. 2019, 11, 49.

[51]

Z. X. Liu, Y. Q. Yang, S. Q. Liang, B. A. Lu, J. Zhou, Small Struct. 2021, 2, 2100119.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/