Microscopic Insight of the High-Entropy Effect on the Lithium Storage Performance and Rate Capability of Spinel Oxide

Man Zhao , Xinxin Zhang , Haitao Yu , Ying Xie , Tingfeng Yi

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70060

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70060 DOI: 10.1002/eem2.70060
RESEARCH ARTICLE

Microscopic Insight of the High-Entropy Effect on the Lithium Storage Performance and Rate Capability of Spinel Oxide

Author information +
History +
PDF

Abstract

High-entropy spinel oxides are promising anode materials for lithium-ion batteries owing to their unique crystal structures, which provide enhanced structural stability, multiple redox-active sites, and three-dimensional Li+ diffusion pathways. However, the intrinsic complexity and compositional diversity of high-entropy systems have limited a comprehensive understanding of the correlation between crystal structure, elemental composition, and rate performance, thereby impeding further optimization and practical application. In this study, a high-entropy spinel oxide (Fe0.2Co0.2Ni0.2Cr0.2Zn0.2)3O4 (FCNCZO) is synthesized to investigate its electrochemical properties. The material delivers a high reversible capacity of 551 mAh g–1 at 500 mA g–1 after 110 cycles and maintains an excellent rate capability of 330 mAh g–1 at a high current density of 2000 mA g–1. Density functional theory calculations indicate that the synergistic interaction among multiple metal elements reduces the bandgap and broadens the d-band width. Moreover, the high-entropy effect promotes metal-oxygen orbital hybridization, facilitates charge redistribution, and significantly enhances rate capability. These findings provide new microscopic insights into the high-entropy effect and demonstrate its potential in designing next-generation high-entropy anode materials with superior rate performance for high-power lithium-ion batteries.

Keywords

DFT / high-entropy effects / high-entropy spinel oxides / lithium-ion batteries / rate performance

Cite this article

Download citation ▾
Man Zhao, Xinxin Zhang, Haitao Yu, Ying Xie, Tingfeng Yi. Microscopic Insight of the High-Entropy Effect on the Lithium Storage Performance and Rate Capability of Spinel Oxide. Energy & Environmental Materials, 2025, 8(6): e70060 DOI:10.1002/eem2.70060

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Sun, J. Pan, W. Chen, H. Chen, S. Zhou, X. Wu, Y. Wang, K. Kim, J. Li, H. Liu, Y. Yuan, J. Wang, D. Su, D. L. Peng, Q. Zhang, Adv. Energy Mater. 2023, 14, 2303165.

[2]

L. Li, L. Fu, M. Li, C. Wang, Z. Zhao, S. Xie, H. Lin, X. Wu, H. Liu, L. Zhang, Q. Zhang, L. Tan, J. Energy Chem. 2022, 71, 588.

[3]

L. Hou, L. Lian, L. Zhang, G. Pang, C. Yuan, X. Zhang, Adv. Funct. Mater. 2015, 25, 238.

[4]

X. Feng, D. Ren, X. He, M. J. J. Ouyang, Joule 2020, 4, 743.

[5]

J. Pan, Z. Sun, X. Wu, T. Liu, Y. Xing, J. Chen, Z. Xue, D. Tang, X. Dong, H. Zhang, H. Liu, Q. Wei, D. L. Peng, K. Amine, Q. Zhang, J. Am. Chem. Soc. 2025, 147, 3047.

[6]

F. Zhang, Y. Liang, Z. Ye, L. Deng, Y. Guo, P. Qiu, P. Jia, Q. Zhang, L. Zhang, Chin. Chem. Lett. 2024, 35, 108655.

[7]

Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. J. N. Gao, Nature 2019, 574, 223.

[8]

X. Liu, X. Li, Y. Li, H. Zhang, Q. Jia, S. Zhang, W. Lei, EcoMat 2022, 4, e12261.

[9]

Q. Wang, X. Liu, D. He, D. Wang, Mater. Today 2023, 70, 218.

[10]

L. Liang, M. Su, Z. Sun, L. Wang, L. Hou, H. Liu, Q. Zhang, C. Yuan, Sci. Adv. 2024, 10, eado4472.

[11]

X. Liu, Y. Yu, K. Li, Y. Li, X. Li, Z. Yuan, H. Li, H. Zhang, M. Gong, W. Xia, Y. Deng, W. Lei, Adv. Mater. 2024, 36, 202312583.

[12]

C. Liu, J. Bi, L. Xie, X. Gao, J. Rong, J. Energy Storage 2023, 7, 108211.

[13]

P. Ghigna, L. Airoldi, M. Fracchia, D. Callegari, U. Anselmi Tamburini, P. D'Angelo, N. Pianta, R. Ruffo, G. Cibin, D. O. de Souza, E. Quartarone, ACS Appl. Mater. Interfaces 2020, 12, 50344.

[14]

N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Y. Cui, J. Alloys Compd. 2019, 777, 767.

[15]

J. Liu, Y. Han, W. Ke, J. Tang, G. Xu, L. Deng, L. Zhao, Z. Wang, J. Alloys Compd. 2024, 993, 174587.

[16]

E. Lokcu, C. Toparli, M. Anik, ACS Appl. Mater. Interfaces 2020, 12, 23860.

[17]

B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui, B. Shen, J. Qi, F. Wei, J. Zheng, Nano Energy 2022, 95, 106962.

[18]

C. Jin, Y. Wang, H. Dong, Y. Wei, R. Nan, Z. Jian, Z. Yang, Q. Ding, Inorganics 2024, 12, 198.

[19]

C. Jin, Y. Wang, P. Lu, H. Dong, Y. Wei, R. Nan, Z. Jian, Z. Yang, Q. Ding, Electrochim. Acta 2024, 506, 145004.

[20]

C. Jin, Y. Wang, Y. Wei, R. Nan, Z. Jian, Z. Yang, Q. Ding, J. Power Sources 2024, 613, 234926.

[21]

Y. Yu, H. Li, J. Liu, W. Xu, D. Zhang, J. Xiong, B. Li, A. O. Omelchuk, J. Lai, L. Wang, J. Mater. Chem. A 2022, 10, 21260.

[22]

M. V. Gorbunov, S. Carocci, I. G. G. Martinez, V. Baran, D. Mikhailova, Front. Energy Res. 2021, 9, 657.

[23]

X. Pan, X. Duan, X. Lin, F. Zong, X. Tong, Q. Li, T. Wang, J. Alloys Compd. 2018, 732, 270.

[24]

Y. Li, Z. Chen, J. Liu, R. Liu, C. Zhang, H. Li, Ceram. Int. 2023, 49, 38439.

[25]

Y. Yan, H. Tang, F. Wu, R. Wang, M. Pan, Energies 2017, 10, 10091296.

[26]

J. C. Wang, J. Ren, H. C. Yao, L. Zhang, J. S. Wang, S. Q. Zang, L. F. Han, Z.-J. Li, J. Hazard. Mater. 2016, 311, 11.

[27]

Y. Liu, H. Zhang, N. Jiang, W. Zhang, H. Arandiyan, Z. Wang, S. Luo, F. Fang, H. Sun, J. Alloys Compd. 2020, 834, 155030.

[28]

Y. Tan, C. Yang, W. Qian, X. Sui, C. Teng, Q. Li, Z. Lu, J. Alloys Compd. 2021, 855, 157387.

[29]

Y. Lei, Y. Wang, W. Yang, H. Yuan, D. Xiao, RSC Adv. 2015, 5, 7575.

[30]

C. Duan, K. Tian, X. Li, D. Wang, H. Sun, R. Zheng, Z. Wang, Y. Liu, Ceram. Int. 2021, 47, 32025.

[31]

B. Jia, Y. Zhao, M. Qin, W. Wang, Z. Liu, C. Y. Lao, Q. Yu, Y. Liu, H. Wu, Z. Zhang, X. Qu, J. Mater. Chem. A 2018, 6, 11147.

[32]

B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui, B. Shen, J. Qi, F. Wei, Q. Meng, Y. Ren, X. Xue, J. Zheng, J. Mao, K. Dai, Ceram. Int. 2021, 47, 33972.

[33]

Y. Li, Z. Sun, D. Liu, Y. Gao, Y. Wang, H. Bu, M. Li, Y. Zhang, G. Gao, S. Ding, J. Mater. Chem. A 2020, 8, 2021.

[34]

Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen, M. Liu, Adv. Funct. Mater. 2019, 29, 1901783.

[35]

J. Wang, S. Xie, T. Liu, T. Yao, L. Zhu, A. M. Asiri, H. M. Marwani, X. Han, H. Wang, Mater. Today Commun. 2019, 20, 100578.

[36]

B. Sun, S. Lou, W. Zheng, Z. Qian, C. Cui, P. Zuo, C. Du, J. Xie, J. Wang, G. Yin, Nano Energy 2020, 78, 105366.

[37]

Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu, Y. Ding, X. Zhang, X. Li, L. Hu, D. Ji, G. Cao, ACS Nano 2020, 14, 5581.

[38]

H. He, D. Huang, Q. Gan, J. Hao, S. Liu, Z. Wu, W. K. Pang, B. Johannessen, Y. Tang, J. L. Luo, H. Wang, Z. Guo, ACS Nano 2019, 13, 11843.

[39]

C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 2008, 130, 2730.

[40]

P. Santhoshkumar, S. H. Kang, N. Shaji, C. W. Lee, J. Alloys Compd. 2020, 842, 155649.

[41]

Q. Hao, D. Zhao, H. Duan, Q. Zhou, C. Xu, Nanoscale 2015, 7, 5320.

[42]

J. Li, S. Xiong, X. Li, Y. Qian, Nanoscale 2013, 5, 2045.

[43]

J. S. Cho, Y. J. Hong, Y. C. Kang, ACS Nano 2015, 9, 4026.

[44]

T. Y. Chen, S. Y. Wang, C. H. Kuo, S. C. Huang, M. H. Lin, C. H. Li, H. Y. T. Chen, C. C. Wang, Y. F. Liao, C. C. Lin, Y. M. Chang, J. W. Yeh, S. J. Lin, T. Y. Chen, H. Y. Chen, J. Mater. Chem. A 2020, 8, 21756.

[45]

L. Ji, Z. Tan, T. R. Kuykendall, S. Aloni, S. Xun, E. Lin, V. Battaglia, Y. Zhang, Phys. Chem. Chem. Phys. 2011, 13, 7170.

[46]

K. H. Tian, C. Q. Duan, Q. Ma, X. L. Li, Z. Y. Wang, H. Y. Sun, S. H. Luo, D. Wang, Y. G. Liu, Rare Metals 2021, 41, 1265.

[47]

P. Salimi, G. Gottardi, W. G. Morais, R. Bartali, N. Laidani, E. G. Macchi, Batteries 2024, 10, 304.

[48]

Y. Zhao, Y. Fu, Y. Meng, Z. Wang, J. Liu, X. Gong, Chem. Eng. J. 2024, 480, 148047.

[49]

D. Wang, P. Wang, S. Zhuang, C. Wang, J. Shi, Neurocomputing 2020, 417, 10.

[50]

Z. Sun, Y. Zhao, C. Sun, Q. Ni, C. Wang, H. Jin, Chem. Eng. J. 2022, 431, 133448.

[51]

J. Z. Yen, Y. C. Yang, H. Y. Tuan, Chem. Eng. J. 2022, 450, 137924.

[52]

S. Hao, B. Zhang, J. Feng, Y. Liu, S. Ball, J. Pan, M. Srinivasan, Y. J. J. O. M. C. A. Huang, J. Mater. Chem. A 2017, 5, 8510.

[53]

Y. Jin, L. Dang, H. Zhang, C. Song, Q. Lu, F. J. C. E. J. Gao, Chem. Eng. J. 2017, 326, 292.

[54]

M. Sun, X. Sheng, Z. Cui, S. Li, Q. Zhang, F. Xie, G. Liu, S. Hao, F. Diao, S. Sun, Y. Wang, J. Am. Chem. Soc. 2024, 107, 8650.

[55]

Z. Wang, K. Dong, D. Wang, S. Luo, Y. Liu, Q. Wang, Y. Zhang, A. Hao, C. Shi, N. Zhao, J. Mater. Chem. A 2019, 7, 14309.

[56]

F. Xie, M. Sun, X. Sheng, Q. Zhang, Z. Ling, S. Hao, F. Diao, Y. Wang, Mater. Lett. 2024, 358, 135877.

[57]

J. Patra, S. C. Wu, I. C. Leu, C. C. Yang, R. S. Dhaka, S. Okada, H. L. Yeh, C. M. Hsieh, B. K. Chang, J. K. Chang, ACS Appl. Energy Mater. 2021, 4, 5738.

[58]

B. Xu, Y. Mu, Z. Mao, Z. Xie, H. Wu, Y. Zhang, C. Jin, Z. Chi, S. Liu, J. Xu, Y.-C. Wu, P. Y. Lu, A. Lien, M. R. Bryce, Chem. Sci. 2016, 7, 2201.

[59]

S. Hao, X. Sheng, F. Xie, M. Sun, F. Diao, Y. Wang, J. Energy Storage 2024, 80, 110412.

[60]

J. Zhao, X. Yang, Y. Huang, F. Du, Y. Zeng, ACS Appl. Mater. Interfaces 2021, 13, 58674.

[61]

O. J. Marques, C. Chen, E. V. Timofeeva, C. U. Segre, J. Power Sources 2023, 564, 232852.

[62]

S. H. Yu, S. H. Lee, D. J. Lee, Y. E. Sung, T. Hyeon, Small 2016, 12, 2146.

[63]

N. Spinner, L. Zhang, W. E. Mustain, J. Mater. Chem. A 2014, 2, 1627.

[64]

K. Cao, L. Jiao, H. Liu, Y. Liu, Y. Wang, Z. Guo, H. Yuan, Adv. Energy Mater. 2015, 5, 1401421.

[65]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[66]

G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.

[67]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[68]

P. E. Blöchl, Phys. Rev. B. 1994, 50, 17953.

[69]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[70]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[71]

H. Sun, Y. Li, L. Gao, M. Chang, X. Jin, B. Li, Q. Xu, W. Liu, M. Zhou, X. Sun, J. Energy Chem. 2023, 81, 349.

[72]

A. van de Walle, M. Asta, G. Ceder, Calphad 2002, 26, 539.

[73]

A. van de Walle, P. Tiwary, M. de Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, Z.-K. Liu, Calphad 2013, 42, 13.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/