Growth and Properties of Sb-Ge-Se Thin Films: A Promising Material for Sustainable Photovoltaic Devices Development

Víctor Bonal , Samira Khelifi , Sanja Djurdjić Mijin , Beatriz Galiana , Yudania Sánchez , Marina García-Pardo , Antonio Arranz , Nazaret Ruíz-Marín , Snežana Lazić , Rosalia Serna , Raquel Caballero

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70059

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70059 DOI: 10.1002/eem2.70059
RESEARCH ARTICLE

Growth and Properties of Sb-Ge-Se Thin Films: A Promising Material for Sustainable Photovoltaic Devices Development

Author information +
History +
PDF

Abstract

Sb-Ge chalcogenides are known as effective phase change materials, making them ideal for optical data storage applications, detectors, and sensors. However, there have been no photovoltaic devices developed using these materials to date. In this work, Sb-Ge-Se crystalline thin films with different [Sb]/[Ge] atomic ratios are successfully grown for the first time through the selenization of co-evaporated Sb and Ge layers. The impact of the Se addition and temperature during the selenization process on the composition, structural, morphological, vibrational, and optical properties of the Sb-Ge-Se layers is investigated. The coexistence of Sb2Se3 and GeSe2 has been confirmed using various characterization techniques, including Grazing Incidence X-ray diffraction, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Raman spectroscopy. Additionally, Scanning Transmission Electron Microscopy has revealed Ge-enrichment regions surrounding the Sb2Se3 crystals. The composition of the co-evaporated film and final Ge content in the chalcogenide film govern the band gap energy, increasing from 1.41 to 1.83 eV. We present the inaugural operational SLG/Mo/Sb-Ge-Se/CdS/ZnO/ITO photovoltaic devices with a total efficiency of 1.34%. The primary factors limiting the device performance are the significant CdS diffusion into the active layer and the high defect density, as determined by Capacitance-Voltage and Drive-Level Capacitance Profiling. The devices exhibit excellent stability after 1 year of storage in ambient air. These first prototypes of Sb-Ge-Se crystalline thin films pave the way for advancement in the development of sustainable and stable photovoltaic devices.

Keywords

chalcogenides / Sb-Ge-Se / selenization / solar cells

Cite this article

Download citation ▾
Víctor Bonal, Samira Khelifi, Sanja Djurdjić Mijin, Beatriz Galiana, Yudania Sánchez, Marina García-Pardo, Antonio Arranz, Nazaret Ruíz-Marín, Snežana Lazić, Rosalia Serna, Raquel Caballero. Growth and Properties of Sb-Ge-Se Thin Films: A Promising Material for Sustainable Photovoltaic Devices Development. Energy & Environmental Materials, 2025, 8(6): e70059 DOI:10.1002/eem2.70059

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, Nat. Photonics 2015, 9, 409.

[2]

X. Chen, B. Che, Y. Zhao, S. Wang, H. Li, J. Gong, G. Chen, T. Chen, X. Xiao, J. Li, Adv. Energy Mater. 2023, 13, 2300391.

[3]

Y. Zhao, S. Wang, C. Li, B. Che, X. Chen, H. Chen, R. Tang, X. Wang, J. Gong, T. Chen, G. Chen, X. Xiao, J. Li, Energy Environ. Sci. 2022, 15, 5118.

[4]

S. Hadke, M. Huang, C. Chen, Y. F. Tay, S. Chen, J. Tang, L. Wong, Chem. Rev. 2022, 122, 10170.

[5]

S. C. Liu, C. Chen, S. Chen, C. M. Dai, Y. Min, Y. Hou, J. Tang, D. J. Xue, A. H. proppe, Y. Zhou, E. H. Sargent, J. S. Hu, Nat. Commun. 2021, 12, 670.

[6]

K. Yumigeta, C. Brayfield, S. Yang, Y. Shen, S. Tongay, RSC Adv. 2020, 10, 38227.

[7]

R. Golovchak, J. Plummer, A. Kovalskiy, Y. Holovchak, T. Ignatova, A. Trofe, B. Mahlovanyi, J. Cebulski, P. Krzeminski, Y. Shpotyuk, C. BoussardPledel, B. Bureau, Sci. Rep. 2023, 13, 2881.

[8]

J. Petzelt, J. Grigas, Ferroelectrics 1973, 5, 59.

[9]

Z. V. Popovic, R. Gajic, Phys. Rev. B 1986, 33, 5878.

[10]

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, R. C. Keezer, Solid State Commun. 1967, 5, 113.

[11]

E. I. Voit, A. E. Panasenko, L. A. Zemnukhova, J. Struct. Chem. 2009, 50, 60.

[12]

E. J. Danielewicz, P. D. Coleman, Appl. Opt. 1974, 13, 1164.

[13]

A. L. J. Pereira, L. Gracia, D. Santamaría-Pérez, R. Vilaplana, F. J. Manjón, D. Errandonea, M. Nalin, A. Beltrán, Phys. Rev. B 2012, 85, 174108.

[14]

M. Madon, P. Gillet, C. Julien, G. D. Price, Phys. Chem. Miner. 1991, 18, 7.

[15]

P. Hermet, A. Lignie, G. Fraysse, P. Armand, P. Papet, Phys. Chem. Chem. Phys. 2013, 15, 15943.

[16]

E. Baudet, C. Cardinaud, A. Girard, E. Rinnert, K. Michel, B. Bureau, V. Nazabal, J. Non-Cryst. Solids 2016, 444, 64.

[17]

E. Baudet, C. Cardinaud, R. Boidin, A. Girard, J. Gutwirth, P. Nĕmec, V. Nazabal, J. Am. Chem. Soc. 2018, 101, 3347.

[18]

J. F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Jill Chastain, Physical Electronics Division, Perkin-Elmer Corporation, Waltham, MA 1992.

[19]

NIST X-Ray Photoelectron Spectroscopy Database (SRD 20), Version 5.0, https://srdata.nist.gov/xps/, 2024.

[20]

Z. V. Popović, P. M. Nikolić, Solid State Commun. 1978, 27, 561.

[21]

G. Mestl, P. Ruiz, B. Delmon, H. Knozinger, J. Phys. Chem. 1994, 98, 11276.

[22]

A. Shongalova, M. R. Correia, B. Vermang, J. M. V. Cunha, P. M. P. Salomé, P. A. Fernandes, MRS Commun. 2018, 8, 865.

[23]

T. P. Devereaux, R. Hackl, Rev. Mod. Phys. 2007, 79, 175.

[24]

A. Kumar, V. Kumar, A. Romeo, C. Wiemer, G. Mariotto, J. Phys. Chem. C 2021, 125, 19858.

[25]

P. Vidal-Fuentes, M. Guc, X. Alcobe, T. Jawhari, M. Placidi, A. Pérez-Rodríguez, E. Saucedo, V. Izquierdo-Roca, 2D Mater. 2019, 6, 045054.

[26]

N. Fleck, T. D. C. Hobson, C. N. Savory, J. Buckeridge, T. D. Veal, M. R. Correia, D. O. Scanlon, K. Durose, F. Jäckel, J. Mater. Chem. A 2020, 8, 8337.

[27]

J. Barták, D. Valdés, S. Martinková, J. Shánělová, P. Koštál, J. Non-Cryst. Solids 2023, 607, 122229.

[28]

X. Wen, Z. Lu, X. Yang, C. Chen, M. A. Washington, G. C. Wang, J. Tang, Q. Zhao, T. M. Lu, ACS Appl. Mater. Interfaces 2023, 15, 22251.

[29]

V. Pamukchieva, A. Szekeres, E. Savova, E. Vlaikova, J. Non-Cryst. Solids 1998, 242, 110.

[30]

N. Dulgheru, M. Gartner, M. Anastasescu, M. Stoica, M. Nicolescu, H. Stroescu, I. Atkinson, V. Bratan, I. Stanculescu, A. Szekeres, P. Terziyska, M. Fabian, Infrared Phys. Technol. 2018, 93, 260.

[31]

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.

[32]

H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells 1997, 49, 407.

[33]

S. Messina, M. T. S. Nair, P. K. Nair, J. Electrochem. Soc. 2009, 156, H327.

[34]

I. Becerril-Romero, D. Sylla, M. Placidi, Y. Sánchez, J. Andrade-Arvizu, V. Izquierdo-Roca, M. Guc, A. Pérez-Rodríguez, S. Grini, L. Vines, B. Pusay, R. Almache, J. Puigdollers, P. Pistor, E. Saucedo, M. Espíndola-Rodríguez, ACS Appl. Mater. Interfaces 2020, 12, 33656.

[35]

Z. Wang, S. Bae, M. Baljozovic, P. Adams, D. Yong, E. Service, T. Moehl, W. Niu, S. D. Tilley, ACS Catal. 2024, 14, 9877.

[36]

D. Liu, R. Tang, Y. Ma, C. Jiang, W. Lian, G. Li, W. Han, C. Zhu, T. Chen, ACS Appl. Mater. Interfaces 2021, 13, 18856.

[37]

S. Khelifi, G. Brammertz, L. Choubrac, M. Batuk, S. Yang, M. Meuris, N. Barreau, J. Hadermann, H. Vrielinck, D. Poelman, K. Neyts, B. Vermang, J. Lauwaert, Sol. Energy Mater. Sol. Cells 2021, 219, 110824.

[38]

H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623.

[39]

E. Hajdeu-Chicarosh, V. Rotaru, S. Levcenko, R. Serna, I. A. Victorov, M. Guc, R. Caballero, J. M. Merino, E. Arushanov, M. León, Phys. Chem. Chem. Phys. 2023, 25, 31188.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/