Manganese-Incorporated Single-Phase High-Entropy Oxide Modified Separator Enabled High Performance of Lithium-Sulfur Batteries at High Sulfur Loading

Hassan Raza , Junye Cheng , Subash Kandasamy , Muneeswara Madithedu , Neha Tewari , Idris Temitope Bello , Jialiang Wei , Jia Xu , Liang An , Guangping Zheng , Steven Tyler Boles

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70058

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70058 DOI: 10.1002/eem2.70058
RESEARCH ARTICLE

Manganese-Incorporated Single-Phase High-Entropy Oxide Modified Separator Enabled High Performance of Lithium-Sulfur Batteries at High Sulfur Loading

Author information +
History +
PDF

Abstract

High-entropy oxides (HEOs) have sparked scientific interest recently as a potential material technology for lithium-sulfur (Li–S) batteries. This interest stems from their simultaneous roles as sulfur hosts and electrocatalysts, which provide enhancements to the performance of sulfur cathode composites. Nonetheless, their incorporation into the active material blend results in compromised energy density, particularly when their gravimetric proportion is substantial (≥10 wt.%, in the sulfur-based cathode). In this study, a manganese (Mn)-containing HEO (Sconfig ≥ 1.5R) was synthesized and subsequently coated onto a commercial Celgard separator at a low areal loading (~0.23 mg cm–2) with the aim of decreasing HEO content in the cathode composite material while still boosting lithium polysulfide (LPS) conversion kinetics. Li–S batteries incorporating this modified separator-high entropy oxide (MS-HEO) demonstrate exceptional electrochemical performance, achieving a high initial discharge capacity of ~1642 mAh g–1 at 0.1 C and a remarkably low-capacity fade rate of 0.055% per cycle over 450 cycles at 1 C. Remarkably, the MS-HEO batteries exhibited commendable electrochemical performance at high sulfur loading (~7 mg cm–2), delivering an initial discharge capacity of ~819 mAh g–1 during the first discharge and maintaining stable cycling up to 30 cycles at 0.1 C thereafter. Collectively, this work underscores the significance of precise adjustment of HEO compositions through low-temperature MOF calcination strategies and demonstrates their potential to enhance the electrochemical performance of Li–S batteries under the high-sulfur loading conditions necessary for future commercial applications.

Keywords

electrocatalysts / high entropy oxide / high sulfur loading / lithium sulfur batteries / separator modification

Cite this article

Download citation ▾
Hassan Raza, Junye Cheng, Subash Kandasamy, Muneeswara Madithedu, Neha Tewari, Idris Temitope Bello, Jialiang Wei, Jia Xu, Liang An, Guangping Zheng, Steven Tyler Boles. Manganese-Incorporated Single-Phase High-Entropy Oxide Modified Separator Enabled High Performance of Lithium-Sulfur Batteries at High Sulfur Loading. Energy & Environmental Materials, 2025, 8(6): e70058 DOI:10.1002/eem2.70058

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Zhou, H. Chen, Y. Cui, Nat. Energy 2022, 7, 312.

[2]

Y. Xiang, L. Lu, A. G. P. Kottapalli, Y. Pei, Carbon Energy 2022, 4, 346.

[3]

P. Feng, K. Dong, Y. Xu, X. Zhang, H. Jia, H. Prell, M. Tovar, I. Manke, F. Liu, H. Xiang, M. Zhu, Y. Lu, Adv. Fiber Mater. 2024, 6, 810.

[4]

R. Deng, M. Wang, H. Yu, S. Luo, J. Li, F. Chu, B. Liu, F. Wu, Energy Environ. Mater. 2022, 5, 777.

[5]

A. Manthiram, Y. Fu, S. H. Chung, C. Zu, Y. S. Su, Chem. Rev. 2014, 114, 11751.

[6]

Z. W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605.

[7]

R. Fang, S. Zhao, Z. Sun, D. W. Wang, H.-M. Cheng, F. Li, Adv. Mater. 2017, 29, 1606823.

[8]

Y. Boyjoo, H. Shi, Q. Tian, S. Liu, J. Liang, Z.-S. Wu, M. Jaroniec, J. Liu, Energy Environ. Sci. 2021, 14, 540.

[9]

J. Zhang, M. Li, H. A. Younus, B. Wang, Q. Weng, Y. Zhang, S. Zhang, Nano Mater. Sci. 2021, 3, 124.

[10]

H. Raza, S. Bai, J. Cheng, S. Majumder, H. Zhu, Q. Liu, G. Zheng, X. Li, G. Chen, Electrochem. Energy Rev. 2023, 6, 29.

[11]

Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166.

[12]

J. Guo, Y. Xu, C. Wang, Nano Lett. 2011, 11, 4288.

[13]

B. Lin, Y. Zhang, W. Li, J. Huang, Y. Yang, S. W. Or, Z. Xing, S. Guo, eScience 2024, 4, 100180.

[14]

J. Huang, Z. Song, J. Wu, Y. Miao, M. Li, D. Lin, K. Zhu, X. Chen, X. Li, Y. Chen, Energy Mater. Devices 2024, 2, 9370051.

[15]

X. Ji, L. F. Nazar, J. Mater. Chem. 2010, 20, 9821.

[16]

M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. Tübke, Adv. Energy Mater. 2015, 5, 1401986.

[17]

W. Jiang, T. Zhang, R. Mao, Z. Song, S. Liu, C. Song, X. Jian, F. Hu, eScience 2024, 4, 100203.

[18]

D. Zhu, L. Sheng, J. Wang, L. Wang, H. Xu, X. He, Batter. Energy 2023, 2, 20230002.

[19]

P. Lin, B. Gao, X. Lan, M. Wang, J. Li, H. Fu, Langmuir 2024, 40, 15996.

[20]

L. He, Z. Luo, P. Liu, X. Zhu, W. Fan, Q. Yu, X. Liu, H. Li, EcoEnergy 2024, 3, 192.

[21]

X. Ma, C. Xu, Y. Yang, D. Sun, K. Zhao, C. Lu, P. Jin, Y. Chong, S. Pruksawan, Z. Xiao, F. Wang, Mater. Rep. Energy 2024, 4, 100279.

[22]

S. Yao, T. Zhang, C. Ma, C. Zhang, W. Zhang, J. Shang, X. Zhang, H. Liu, H. Sun, L. Wang, J. Xiang, X. Shen, Mater. Res. Bull. 2024, 171, 112604.

[23]

X. Gao, L. Wang, J. Cheng, J. Zhao, X. Liu, Chin. Chem. Lett. 2024,

[24]

H. Zhu, S. Dong, J. Xiong, P. Wan, X. Jin, S. Lu, Y. Zhang, H. Fan, J. Colloid Interface Sci. 2023, 641, 942.

[25]

J. Shang, C. Ma, C. Zhang, W. Zhang, B. Shen, F. Wang, S. Guo, S. Yao, J. Energy Storage 2024, 82, 110552.

[26]

S. H. Albedwawi, A. AlJaberi, G. N. Haidemenopoulos, K. Polychronopoulou, Mater. Des. 2021, 202, 109534.

[27]

R. Z. Zhang, F. Gucci, H. Zhu, K. Chen, M. J. Reece, Inorg. Chem. 2018, 57, 13027.

[28]

L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera, Q. Wang, R. Azmi, M. Fichtner, H. Hahn, S. Schweidler, B. Breitung, Adv. Energy Mater. 2022, 12, 2103090.

[29]

B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui, B. Shen, J. Qi, F. Wei, J. Zheng, Nano Energy 2022, 95, 106962.

[30]

J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M. C. Quinn, W. M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 2016, 6, 37946.

[31]

T. Jin, X. Sang, R. R. Unocic, R. T. Kinch, X. Liu, J. Hu, H. Liu, S. Dai, Adv. Mater. 2018, 30, 1707512.

[32]

X. Yan, L. Constantin, Y. Lu, J. F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 2018, 101, 4486.

[33]

H. Raza, S. Ullah, A. Akhtar, G. A. Gohar, I. T. Bello, A. Raza, A. Ahmed, Mater. Lett. 2025, 393, 138580.

[34]

Z. Cai, H. Ji, Y. Ha, J. Liu, D. H. Kwon, Y. Zhang, A. Urban, E. E. Foley, R. Giovine, H. Kim, Z. Lun, T. Y. Huang, G. Zeng, Y. Chen, J. Wang, B. D. McCloskey, M. Balasubramanian, R. J. Clément, W. Yang, G. Ceder, Matter 2021, 4, 3897.

[35]

J. M. Gonçalves, É. A. Santos, P. R. Martins, C. G. Silva, H. Zanin, Energy Storage Mater. 2023, 63, 102999.

[36]

Y. Yao, Z. Zhao, R. Niu, J. Chen, X. Wang, Chem. Phys. Lett. 2024, 839, 141124.

[37]

L. Tian, Z. Zhang, S. Liu, G. Li, X. Gao, Energy Environ. Mater. 2022, 5, 645.

[38]

S. Yao, M. Bi, H. Yu, C. Zhang, X. Zhang, H. Liu, T. Zhang, J. Xiang, X. Shen, Appl. Surf. Sci. 2022, 598, 153787.

[39]

Y. Liu, Z. Wei, B. Zhong, H. Wang, L. Xia, T. Zhang, X. Duan, D. Jia, Y. Zhou, X. Huang, Energy Storage Mater. 2021, 35, 12.

[40]

H. Wang, S. Jamil, M. Fasehullah, S. Bao, Y. Li, M. Xu, Mater. Rep. Energy 2024, 4, 100298.

[41]

H. Raza, J. Cheng, C. Lin, S. Majumder, G. Zheng, G. Chen, EcoMat 2023, 5, e12324.

[42]

D. m. prices, https://www.dailymetalprice.com/metalprices.php (accessed: July 2024).

[43]

C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J.-P. Maria, Nat. Commun. 2015, 6, 8485.

[44]

H. Raza, J. Cheng, J. Wang, S. Kandasamy, G. Zheng, G. Chen, Nano Res. Energy 2024, 3, e9120116.

[45]

A. Sarkar, Q. Wang, A. Schiele, M. R. Chellali, S. S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, Adv. Mater. 2019, 31, 1806236.

[46]

A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, B. Breitung, Nat. Commun. 2018, 9, 3400.

[47]

J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Mater. Lett. 2018, 216, 32.

[48]

H. Wu, E. S. Kim, RSC Adv. 2016, 6, 47443.

[49]

G. George, S. Anandhan, RSC Adv. 2014, 4, 62009.

[50]

C. Luo, D. Li, W. Wu, Y. Zhang, C. Pan, RSC Adv. 2014, 4, 3090.

[51]

Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li, R. Zhang, M. Li, Z. A. Qiao, Energy Storage Mater. 2019, 23, 678.

[52]

S. Wang, X. Liu, H. Duan, Y. Deng, G. Chen, Chem. Eng. J. 2021, 415, 129001.

[53]

F. Liu, W. Lu, J. Huang, V. Pimenta, S. Boles, R. Demir-Cakan, J.-M. Tarascon, Nat. Commun. 2023, 14, 7350.

[54]

J. Mu, H. Jiang, M. Yu, S. Gu, G. He, Y. Dai, X. Li, ACS Appl. Mater. Interfaces 2022, 14, 23408.

[55]

S. Abualela, X. Lv, Y. Hu, M. D. Abd-Alla, Mater. Lett. 2020, 268, 127622.

[56]

G. Liu, Q. Zeng, Z. Fan, S. Tian, X. Li, X. Lv, W. Zhang, K. Tao, E. Xie, Z. Zhang, Chem. Eng. J. 2022, 448, 137683.

[57]

H. Raza, J. Cheng, J. Xu, L. An, J. Wang, W. Nie, G. Zheng, G. Chen, Energy Environ. Mater. 2025, 8, e70007.

[58]

Y. Ma, H. Ji, C. Wang, H. Bian, H. Wu, Y. Ren, B. Wang, J. Cao, X. Cao, F. Ding, J. Lu, X. Yang, X. Meng, Langmuir 2024, 40, 11626.

[59]

Y.-Q. Wang, H.-M. Wang, Y.-C. Jiang, G.-R. Li, S. Liu, X.-P. Gao, ACS Appl. Energy Mater. 2023, 6, 8377.

[60]

J. Cheng, S. Ran, T. Li, M. Yan, J. Wu, S. Boles, B. Liu, H. Raza, S. Ullah, W. Zhang, G. Chen, G. Zheng, Adv. Mater. 2023, 35, 2210829.

[61]

G. O. Sofekun, E. Evoy, K. L. Lesage, N. Chou, R. A. Marriott, J. Rheol. 2018, 62, 469.

[62]

G. L. Miessler, Inorganic Chemistry, Pearson Education India, Essex 2008.

[63]

R. F. Bacon, R. Fanelli, J. Am. Chem. Soc. 1943, 65, 639.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/