MoS2–WS2 Heterostructures with Vertical Nanosheets for Enhanced Photocatalytic Hydrogen Generation through Morphology-Controlled Chemical Vapor Deposition

Dong-Bum Seo , Jin Kim , Young Min Jo , Dong In Kim , Tae Gyeong Lim , Saewon Kang , Soonmin Yim , Sun Sook Lee , Eui-Tae Kim , Ki-Seok An

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70055

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70055 DOI: 10.1002/eem2.70055
RESEARCH ARTICLE

MoS2–WS2 Heterostructures with Vertical Nanosheets for Enhanced Photocatalytic Hydrogen Generation through Morphology-Controlled Chemical Vapor Deposition

Author information +
History +
PDF

Abstract

Constructing a nanostructure that combines abundant active edge sites with a well-designed heterostructure is an effective strategy for enhancing photocatalytic hydrogen generation. However, controllable approaches for creating heterostructures based on vertically standing transition metal dichalcogenide (TMD) nanosheets remain insufficient despite their potential for efficient hydrogen production. In this paper, we present efficient photocatalysts featuring heterojunctions composed of vertically grown TMD (MoS2 and WS2) nanosheets. These structures (WS2, MoS2, and MoS2/WS2 heterostructure) were fabricated using a controllable metal–organic chemical vapor deposition method, which expanded the surface area and facilitated effective photocatalytic hydrogen evolution. The vertical MoS2/WS2 heterostructures demonstrated significantly enhanced hydrogen generation, driven by the synergistic effects of improved light absorption, a large specific surface area, and appropriately arranged staggered heterojunctions. Furthermore, the photocatalytic activity was considerably influenced by the size and density of the vertical nanosheets. Consequently, the nanosheet size-tailored MoS2/WS2 heterostructure achieved a photocatalytic hydrogen generation rate (454.2 μmol h–1 cm–2), which is 2.02 times and 2.19 times higher than that of WS2 (225.6 μmol h–1 cm–2) and MoS2 (207.2 μmol h–1 cm–2). Hence, the proposed strategy can be used to design staggered heterojunctions with edge-rich nanosheets for photocatalytic applications.

Keywords

heterostructure / hydrogen production / MoS2 / photocatalysis / WS2

Cite this article

Download citation ▾
Dong-Bum Seo, Jin Kim, Young Min Jo, Dong In Kim, Tae Gyeong Lim, Saewon Kang, Soonmin Yim, Sun Sook Lee, Eui-Tae Kim, Ki-Seok An. MoS2–WS2 Heterostructures with Vertical Nanosheets for Enhanced Photocatalytic Hydrogen Generation through Morphology-Controlled Chemical Vapor Deposition. Energy & Environmental Materials, 2025, 8(5): e70055 DOI:10.1002/eem2.70055

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. G. Walter, E. L. Warren, J. R. Mckone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.

[2]

V. Jella, S. Behera, S. Ippili, S. Joo, K. Kwon, S. Hong, H. S. Kim, S. G. Yoon, Small 2024, 20, 2400824.

[3]

S. Park, S. G. Jang, J. M. Kim, J. Kim, D. B. Seo, D. H. Yoon, H. K. Jung, S. S. Lee, K. S. An, J. Alloys Compd. 2023, 941, 168961.

[4]

M. Kim, M. Son, D. B. Seo, J. Kim, M. Jang, D. I. Kim, S. Lee, S. Yim, W. Song, S. Myung, J. W. Yoo, S. S. Lee, K. S. An, Small 2023, 19, 2206350.

[5]

J. Kim, K. H. Lee, D. B. Seo, H. Jang, S. Kang, S. Yim, S. S. Lee, K. S. An, Chem. Eng. J. 2023, 477, 147014.

[6]

S. Ippili, J. H. Kim, V. Jella, S. Behera, V. H. Vuong, J. S. Jung, Y. Cho, J. Ahn, I. D. Kim, Y. H. Chang, H. S. Kim, S. G. Yoon, Nano Energy 2023, 107, 108148.

[7]

N. D. Quang, W. Hu, H. S. Chang, P. C. Van, D. D. Viet, J. R. Jeong, D. B. Seo, E. T. Kim, C. Kim, D. Kim, Chem. Eng. J. 2021, 417, 129278.

[8]

D. B. Seo, M. S. Kim, T. N. Trung, E. T. Kim, Electrochim. Acta 2020, 364, 137164.

[9]

D. H. Lee, V. Dongquoc, S. Hong, S. I. Kim, E. Kim, S. Cho, C. H. Oh, Y. Je, M. J. Kwon, A. H. Vo, D. B. Seo, J. H. Lee, S. Kim, E. T. Kim, J. H. Park, Small 2022, 18, 2202912.

[10]

J. S. Park, J. H. Kim, S. H. Cho, J. H. Kim, J. Y. Cheong, I. D. Kim, J. W. Jung, H. S. Kim, Ceram. Int. 2023, 49, 5538.

[11]

S. S. Bae, D. B. Seo, R. A. Jayarathna, S. Lee, E. T. Kim, Mater. Lett. 2022, 326, 132914.

[12]

M. Son, H. Jang, D. B. Seo, J. H. Lee, J. Kim, M. Kim, S. Kang, S. Yim, W. Song, J. W. Yoo, H. Y. Kim, S. S. Lee, K. S. An, Adv. Funct. Mater. 2024, 34, 2308906.

[13]

S. H. Cho, J. H. Kim, I. G. Kim, J. H. Park, J. W. Jung, H. S. Kim, I. D. Kim, Nano 2021, 11, 2691.

[14]

D. B. Seo, D. Kim, M. R. Kim, J. Kwon, H. J. Kook, S. Kang, S. Yim, S. S. Lee, D. O. Shin, K. S. An, S. Park, Nanomicro Lett. 2025, 17, 224.

[15]

A. Rawat, N. Jena, A. De Sarkar, J. Mater. Chem. A 2018, 6, 8693.

[16]

Q. Ding, B. Song, P. Xu, S. Jin, Chem 2016, 1, 699.

[17]

B. Mahler, V. Hoepfner, K. Liao, G. A. Ozin, J. Am. Chem. Soc. 2014, 136, 14121.

[18]

D. B. Seo, Y. M. Kwon, J. Kim, S. Kang, S. Yim, S. S. Lee, E. T. Kim, W. Song, K. S. An, ACS Appl. Mater. Interfaces 2024, 16, 28613.

[19]

D. Nayak, R. Thangavel, ACS Appl. Electron. Mater. 2023, 5, 302.

[20]

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, N. Ni, P. Palczynski, C. Mattevi, ACS Catal. 2017, 7, 4990.

[21]

P. C. Sherrell, P. Palczynski, M. S. Sokolikova, F. Reale, F. M. Pesci, M. Och, C. Mattevi, ACS Appl. Energy Mater. 2019, 2, 5877.

[22]

G. J. Lai, L. M. Lyu, Y. S. Huang, G. C. Lee, M. P. Lu, T. P. Perng, M. Y. Lu, L. J. Chen, Nano Energy 2021, 81, 105608.

[23]

D. A. Reddy, H. Park, R. Ma, D. P. Kumar, M. Lim, T. K. Kim, ChemSusChem 2017, 10, 1563.

[24]

B. Archana, N. Kottam, S. Nayak, K. B. Chandrasekhar, M. B. Sreedhara, J. Phys. Chem. C 2020, 124, 14485.

[25]

J. Liu, H. Liu, W. Peng, Y. Li, F. Zhang, X. Fan, Chem. Eng. J. 2022, 431, 133286.

[26]

D. Vikraman, S. Hussain, K. Akbar, L. Truong, A. Kathalingam, S. H. Chun, J. Jung, H. J. Park, H. S. Kim, ACS Sustain. Chem. Eng. 2018, 6, 8400.

[27]

C. Tang, L. Zhong, B. Zhang, H. F. Wang, Q. Zhang, Adv. Mater. 2018, 30, 1705110.

[28]

Y. Li, M. B. Majewski, S. M. Islam, S. Hao, A. A. Murthy, J. G. DiStefano, E. D. Hanson, Y. Xu, C. Wolverton, M. G. Kanatzidis, M. R. Wasielewski, X. Chen, V. P. Dravid, Nano Lett. 2018, 18, 7104.

[29]

H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B. K. Tay, C. Xue, X. Hu, S. T. Pantelides, W. Zhou, Z. Liu, Adv. Energy Mater. 2016, 6, 1600464.

[30]

D. B. Seo, T. N. Trung, S. S. Bae, E. T. Kim, Nano 2021, 11, 1585.

[31]

N. Choudhary, J. Park, J. Y. Hwang, H. S. Chung, K. H. Dumas, S. I. Khondaker, W. Choi, Y. Jung, Sci. Rep. 2016, 6, 25456.

[32]

X. Jiang, B. Sun, Y. Song, M. Dou, J. Ji, F. Wang, RSC Adv. 2017, 7, 49309.

[33]

H. J. Lee, S. W. Lee, H. Hwang, S. I. Yoon, Z. Lee, H. S. Shin, Mater. Chem. Front. 2021, 5, 3396.

[34]

X. Jiang, Y. Song, M. Dou, J. Ji, F. Wang, Int. J. Hydrog. Energy 2018, 43, 21290.

[35]

S. Y. Park, D. B. Seo, H. Choi, J. H. Lee, D. H. Lee, J. Kim, S. Kang, S. Yim, E. T. Kim, S. S. Lee, D. H. Yoon, H. Y. Kim, W. Song, K. S. An, Adv. Funct. Mater. 2024, 34, 2310178.

[36]

D. B. Seo, V. Dongquoc, R. A. Jayarathna, S. Lee, J. H. Lee, E. T. Kim, J. Alloys Compd. 2022, 911, 165090.

[37]

Y. Zhao, J. Liu, X. Zhang, C. Wang, X. Zhao, J. Li, H. Jin, J. Phys. Chem. C 2019, 123, 27363.

[38]

M. A. Qaydi, A. Kotbi, N. S. Rajput, A. Bouchalkha, M. E. Marssi, G. Matras, C. Kasmi, M. Jouiad, Nano 2023, 13, 24.

[39]

H. Seok, Y. T. Megra, C. K. Kanade, J. Cho, V. K. Kanade, M. Kim, I. Lee, P. J. Yoo, H. U. Kim, J. W. Suk, T. Kim, ACS Nano 2021, 15, 707.

[40]

S. K. Kim, W. Song, S. Ji, Y. R. Lim, Y. B. Lee, S. Myung, J. Lim, K. S. An, S. S. Lee, Appl. Surf. Sci. 2017, 425, 241.

[41]

C. Zeng, J. Pu, H. Wang, S. Zheng, R. Chen, Ceram. Int. 2020, 46, 13774.

[42]

Y. Chen, M. Sun, Nanoscale 2021, 13, 5594.

[43]

C. C. Huang, H. Wang, Y. Cao, E. Weatherby, F. Richheimer, S. Wood, S. Jiang, D. Wei, Y. Dong, X. Lu, P. Wang, T. Polcar, D. W. Hewak, ACS Appl. Mater. Interfaces 2022, 14, 42365.

[44]

D. B. Seo, Y. M. Kwon, S. Kang, S. Yim, S. S. Lee, W. Song, K. S. An, Chem. Eng. J. 2024, 496, 153936.

[45]

T. N. Trung, D. B. Seo, N. D. Quang, D. Kim, E. T. Kim, Electrochim. Acta 2018, 260, 150.

[46]

D. B. Seo, S. Kim, T. N. Trung, D. Kim, E. T. Kim, J. Alloys Compd. 2019, 770, 686.

[47]

C. Ma, J. Yan, Y. Huang, G. Yang, Mater. Horiz. 2019, 6, 97.

[48]

C. Han, Y. Wang, W. Zhou, M. Liang, J. Ye, Sci. Rep. 2021, 11, 10080.

[49]

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, Q. Bao, ACS Nano 2016, 10, 573.

[50]

D. B. Seo, T. N. Trung, D. O. Kim, D. V. Duc, S. Hong, Y. Sohn, J. R. Jeong, E. T. Kim, Nanomicro Lett. 2020, 12, 172.

[51]

Y. H. Xiao, W. D. Zhang, Electrochim. Acta 2017, 252, 416.

[52]

D. B. Seo, S. Yoo, V. Dongquoc, T. N. Trung, E. T. Kim, J. Alloys Compd. 2021, 888, 161587.

[53]

M. Irfanullah, D. K. Sharma, R. Chulliyil, A. Chowdhury, Dalton Trans. 2015, 44, 3082.

[54]

S. Seth, A. Samanta, Sci. Rep. 2016, 6, 37693.

[55]

J. D. Major, M. A. Turkestani, L. Bowen, M. Brossard, C. Li, P. Lagoudakis, S. J. Pennycook, L. J. Phillips, R. E. Treharne, K. Durose, Nat. Commun. 2016, 7, 13231.

[56]

W. Zhijian, L. Zhi, C. Jiazang, Y. Hongbin, L. Jianqiang, G. Jiajian, Z. Junming, Y. Cangjie, J. Suping, L. Bin, J. Energy Chem. 2019, 31, 34.

[57]

A. K. Anbalagan, F. C. Hu, W. K. Chan, A. C. Gandhi, S. Gupta, M. Chaudhary, K. W. Chuang, A. K. Ramesh, T. Billo, A. Sabbah, C. Y. Chiang, Y. C. Tseng, Y. L. Chueh, S. Y. Wu, N. H. Tai, H. Y. T. Chen, C. H. Lee, ACS Nano 2023, 17, 6555.

[58]

C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xu, Appl. Catal. B-Environ. 2015,

[59]

J. Shi, R. Tong, X. Zhou, Y. Gong, Z. Zhang, Q. Ji, Y. Zhang, Q. Fang, L. Gu, X. Wang, Z. Liu, Y. Zhang, Adv. Mater. 2016, 28, 10664.

[60]

K. Roy, S. Maitra, D. Ghosh, P. Kumar, P. Devi, Chem. Eng. J. 2022, 435, 134963.

[61]

J. H. Kim, J. S. Park, S. H. Cho, J. M. Park, J. S. Nam, S. G. Yoon, I. D. Kim, J. W. Jung, H. S. Kim, J. Mater. Chem. A 2022, 10, 25009.

[62]

C. F. Xiao, J. H. Kim, S. H. Cho, Y. C. Park, M. J. Kim, K. B. Chung, S. G. Yoon, J. W. Jung, I. D. Kim, H. S. Kim, ACS Nano 2021, 15, 4561.

[63]

L. Yu, K. Xue, H. Luo, C. Liu, H. Liu, H. Zhu, Y. Zhang, Chem. Eng. J. 2023, 472, 144965.

[64]

F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 2020, 41, 9.

[65]

H. Lv, H. Wu, X. Wu, J. Z. Zheng, Y. Liu, Appl. Surf. Sci. 2022, 593, 153448.

[66]

Y. J. Yuan, P. Wang, Z. Li, Y. Wu, W. Bai, Y. Su, J. Guan, S. Wu, J. Zhong, Z. T. Yu, Z. Zou, Appl. Catal. B-Environ. 2019,

[67]

H. Li, M. Yin, M. Huang, X. Xue, X. Li, R. Mo, Chem. Eng. J. 2022, 450, 137900.

[68]

Y. Chen, F. Su, H. Xie, R. Wang, C. Ding, J. Huang, Y. Xu, L. Ye, Chem. Eng. J. 2021, 404, 126498.

[69]

D. Ghosh, P. Devi, P. Kumar, ACS Appl. Mater. Interfaces 2020, 12, 13797.

[70]

X. Wang, G. Hai, B. Li, Q. Luan, W. Dong, G. Wang, Chem. Eng. J. 2021, 426, 130822.

[71]

K. Feng, D. Huang, L. Li, K. Wang, J. Li, T. Harada, S. Ikeda, F. Jiang, Appl Catal B 2020, 268, 118438.

[72]

M. Tayebi, Z. Masoumi, M. Kolaei, A. Tayyebi, M. Tayebi, B. Seo, C. S. Lim, H. G. Kim, B. K. Lee, Chem. Eng. J. 2022, 446, 136830.

[73]

X. Li, S. Guo, W. Li, X. Ren, J. Su, Q. Song, A. J. Sobrido, B. Wei, Nano Energy 2019, 57, 388.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/