From Salar to Cells: Validating Brine-Sourced Li2CO3 from Salar de Uyuni for Lithium-Ion Battery Cell Manufacture

Satish Bolloju , Edgar Bautista Quisbert , Gerard Bree , Gaurav C. Pandey , Galo J. Páez Fajardo , Matthew J. W. Ogley , Ashok S. Menon , Paola Patiño Gutiérrez , Danitza Delgado Bobarin , Sanghamitra Moharana , Muhammad Ans , Eleni Fiamegkou , Rebecca A. Sellers , Louis F. J. Piper

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70053

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70053 DOI: 10.1002/eem2.70053
RESEARCH ARTICLE

From Salar to Cells: Validating Brine-Sourced Li2CO3 from Salar de Uyuni for Lithium-Ion Battery Cell Manufacture

Author information +
History +
PDF

Abstract

In this study, lithium carbonate (Li2CO3) sourced from the Salar de Uyuni salt flat in Bolivia was used in the synthesis of cathode active material for Li-ion batteries. X-ray diffraction, atomic absorption spectrometry, and scanning electron microscopy analyses confirmed that the material had a high phase purity (99.59%, battery-grade) and a suitable morphology for active material synthesis, comparable to a similar commercially obtained material. Li[Ni1/3Mn1/3Co1/3]O2 (NMC111) was synthesized as a model system using Li2CO3 as the precursor and evaluated in full, large-format pouch cells along with three-electrode cells, using commercially relevant active material fractions and mass loadings for meaningful assessment of electrochemical performance. These cells exhibited capacities close to theoretical values and similar to that of commercially obtained NMC111, demonstrating the viability of the raw material. Operando X-ray diffraction analysis of aged pouch cells revealed that capacity loss was due to depletion of lithium inventory, without any disruption to the long-range cathode crystal structure or significant degradation in lithium kinetics. Postmortem analysis of the cycled electrodes further confirmed that transition metal dissolution and lithium trapping on the anode side were key contributors to the capacity fading observed in the pouch cells. This work demonstrates the potential of Salar de Uyuni's lithium resources for the production of cells relevant to practical applications.

Keywords

brine / lithium carbonate / Salar de Uyuni / single-layer pouch cells / three-electrode cells

Cite this article

Download citation ▾
Satish Bolloju, Edgar Bautista Quisbert, Gerard Bree, Gaurav C. Pandey, Galo J. Páez Fajardo, Matthew J. W. Ogley, Ashok S. Menon, Paola Patiño Gutiérrez, Danitza Delgado Bobarin, Sanghamitra Moharana, Muhammad Ans, Eleni Fiamegkou, Rebecca A. Sellers, Louis F. J. Piper. From Salar to Cells: Validating Brine-Sourced Li2CO3 from Salar de Uyuni for Lithium-Ion Battery Cell Manufacture. Energy & Environmental Materials, 2025, 8(6): e70053 DOI:10.1002/eem2.70053

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Xie, Y.-C. Lu, Nat. Commun. 2020, 11, 2499.

[2]

European Commission, Critical Raw Materials, https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en#fifth-list-2023-of-critical-raw-materials-for-the-eu, (accessed: October 2024).

[3]

U.S. Department of Energy, Critical Materials Assessment, https://www.energy.gov/sites/default/files/2023-07/doe-critical-material-assessment_07312023.pdf, (accessed: October 2024).

[4]

M. L. Vera, W. R. Torres, C. I. Galli, A. Chagnes, V. Flexer, Nat. Rev. Earth Environ. 2023, 4, 149.

[5]

International Energy Agency, The Role of Critical Minerals in Clean Energy Transitions, https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf, (accessed: October 2024).

[6]

N. Sharmili, R. Nagi, P. Wang, J. Energy Storage 2023, 68, 107622.

[7]

J. C. Kelly, M. Wang, Q. Dai, O. Winjobi, Resour. Conserv. Recycl. 2021, 174, 105762.

[8]

T.-M. Gao, N. Fan, W. Chen, T. Dai, China Geol. 2023, 6, 137.

[9]

G. Haferburg, J. A. D. Gröning, N. Schmidt, N.-A. Kummer, J. C. Erquicia, M. Schlömann, Microbiological Research 2017,

[10]

Lithium, https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-lithium.pdf, (accessed: October 2024).

[11]

G. E. Ericksen, J. D. Vine, A. Raul Ballón, Energy 1978, 3, 355.

[12]

J. W. An, D. J. Kang, K. T. Tran, M. J. Kim, T. Lim, T. Tran, Hydrometallurgy 2012, 64, 117.

[13]

Z. Xu, H. Zhang, R. Wang, W. Gui, G. Liu, Y. Yang, Ind. Eng. Chem. Res. 2014, 53, 16502.

[14]

T. Lestariningsih, A. Subhan, Q. Sabrina, C. R. Ratri, L. H. Lalasari, S. Priyono, A. Rifai, AIP Conf. Proc. 2024, 3003, 020038.

[15]

D. Thompson, C. Hyde, J. M. Hartley, A. P. Abbott, P. A. Anderson, G. D. J. Harper, Resour. Conserv. Recycl. 2021, 175, 105741.

[16]

Z. Wang, J. Yuan, X. Zhu, H. Wang, L. Huang, Y. Wang, S. Xu, J. Energy Chem. 2021, 55, 484.

[17]

X. Han, Q. Meng, T. Sun, J. Sun, J. Power Sources 2010, 195, 3047.

[18]

R. Jung, R. Morasch, P. Karayaylali, K. Phillips, F. Maglia, C. Stinner, Y. Shao-Horn, H. A. Gasteiger, J. Electrochem. Soc. 2018, 165, A132.

[19]

L. Ma, M. Nie, J. Xia, J. R. Dahn, J. Power Sources 2016, 327, 145.

[20]

R. Santhanam, B. Rambabu, J. Power Sources 2010, 195, 4313.

[21]

A. Smith, P. Stüble, L. Leuthner, A. Hofmann, F. Jeschull, L. Mereacre, Batteries Supercaps 2023, 6, e202300080.

[22]

N. Delpuech, N. Dupre, P. Moreau, J.-S. Bridel, J. Gaubicher, B. Lestriez, D. Guyomard, ChemSusChem 2016, 9, 841.

[23]

C. Peng, F. Liu, Z. Wang, B. P. Wilson, M. Lundström, J. Power Sources 2019, 415, 179.

[24]

A. Higuchi, N. Ankei, S. Nishihama, K. Yoshizuka, JOM 2016, 68, 2624.

[25]

J. Hou, X. Ma, J. Fu, P. Vanaphuti, Z. Yao, Y. Liu, Z. Yang, Y. Wang, Green Chem. 2022, 24, 7049.

[26]

T. Ohzuku, Y. Makimura, Chem. Lett. 2003, 30, 642.

[27]

F. Omenya, N. A. Chernova, H. Zhou, C. Siu, M. S. Whittingham, ECS Meeting Abstracts 2018, MA2018-01, 531.

[28]

S.-Y. Kim, Y.-J. Yang, E. G. Lee, M.-S. Kim, K.-J. Go, M. Kim, G.-Y. Kim, S. Lee, C. Jo, S. Choi, S.-Y. Choi, Chem. Eng. J. 2024, 482, 148869.

[29]

F. Du, X. Zhang, Y. Wang, L. Ding, P. Zhang, L. Liu, D. Wang, J. Man, Y. Chen, Y. Li, J. Energy Chem. 2024, 97, 20.

[30]

H. Yu, Y. Qian, M. Otani, D. Tang, S. Guo, Y. Zhu, H. Zhou, Energy Environ. Sci. 2014, 7, 1068.

[31]

X. Tan, W. Peng, M. Wang, G. Luo, Z. Wang, G. Yan, H. Guo, Q. Li, J. Wang, Prog. Nat. Sci. Mater. Int. 2023, 33, 108.

[32]

M. Wang, Y. Chen, F. Wu, Y. Su, L. Chen, D. Wang, Electrochim. Acta 2010, 55, 8815.

[33]

N. Anansuksawat, T. Sangsanit, S. Prempluem, K. Homlamai, W. Tejangkura, M. Sawangphruk, Chem. Sci. 2024, 15, 2026.

[34]

M.-H. Lee, Y.-J. Kang, S.-T. Myung, Y.-K. Sun, Electrochim. Acta 2004, 50, 939.

[35]

R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, J. Jamnik, J. Power Sources 2003, 119, 770.

[36]

J. H. Mugumya, M. L. Rasche, R. F. Rafferty, A. Patel, S. Mallick, M. Mou, J. A. Bobb, R. B. Gupta, M. Jiang, Energy Fuel 2022, 36, 12261.

[37]

W. Hua, W. Liu, M. Chen, S. Indris, Z. Zheng, X. Guo, M. Bruns, T.-H. Wu, Y. Chen, B. Zhong, S. Chou, Y.-M. Kang, H. Ehrenberg, Electrochim. Acta 2017, 232, 123.

[38]

S. Zhang, C. Deng, S. Y. Yang, H. Niu, J. Alloys Compd. 2009, 484, 519.

[39]

L. Yv, J. Wang, X. Li, L. Dai, Z. Shao, Ionics 2021, 27, 3769.

[40]

V. Gupta, M. Appleberry, W. Li, Z. Chen, Next Energy 2024, 2, 100091.

[41]

Y. Kuang, C. Chen, D. Kirsch, L. Hu, Adv. Energy Mater. 2019, 9, 1901457.

[42]

Y. Chen, J. Key, K. O'Regan, T. Song, Y. Han, E. Kendrick, Chem. Eng. J. 2022, 450, 138275.

[43]

E. Adhitama, F. Demelash, T. Brake, A. Arifiadi, M. Vahnstiege, A. Javed, M. Winter, S. Wiemers-Meyer, T. Placke, Adv. Energy Mater. 2024, 14, 2303468.

[44]

T. Joshi, K. Eom, G. Yushin, T. F. Fuller, J. Electrochem. Soc. 2014, 161, A1915.

[45]

E. M. C. Jones, Ö. Ö. Çapraz, S. R. White, N. R. Sottos, J. Electrochem. Soc. 2016, 163, A1965.

[46]

E. Laakso, S. Efimova, M. Colalongo, P. Kauranen, K. Lahtinen, E. Napolitano, V. Ruiz, J. Moškon, M. Gaberšček, J. Park, S. Seitz, T. Kallio, J. Power Sources 2024, 599, 234159.

[47]

D. Aurbach, M. D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, R. Oesten, J. Power Sources 1999, 81, 472.

[48]

S. Chen, C. Niu, H. Lee, Q. Li, L. Yu, W. Xu, J.-G. Zhang, E. J. Dufek, M. S. Whittingham, S. Meng, J. Xiao, J. Liu, Joule 2019, 3, 1094.

[49]

A. V. Ivanishchev, I. A. Bobrikov, I. A. Ivanishcheva, O. Y. Ivanshina, J. Electroanal. Chem. 2018, 821, 140.

[50]

A. P. Black, C. Escudero, F. Fauth, M. Fehse, G. Agostini, M. Reynaud, R. G. Houdeville, D. Chatzogiannakis, J. Orive, A. Ramo-Irurre, M. Casas-Cabanas, M. R. Palacin, Chem. Mater. 2024, 36, 5596.

[51]

E. Hu, X. Wang, X. Yu, X.-Q. Yang, Acc. Chem. Res. 2018, 51, 290.

[52]

A. O. Kondrakov, A. Schmidt, J. Xu, H. Geßwein, R. Mönig, P. Hartmann, H. Sommer, T. Brezesinski, J. Janek, J. Phys. Chem. C 2017, 121, 3286.

[53]

A. S. Menon, N. Shah, J. A. Gott, E. Fiamegkou, M. J. W. Ogley, G. J. Páez Fajardo, N. Vaenas, I. Ellis, N. Ravichandran, P. Cloetens, D. Karpov, J. M. Warnett, P. Malliband, D. Walker, G. West, M. Loveridge, L. F. J. Piper, PRX Energy 2024, 3, 013004.

[54]

W. M. Dose, I. Temprano, J. P. Allen, E. Björklund, C. A. O'Keefe, W. Li, B. L. Mehdi, R. S. Weatherup, M. F. L. De Volder, C. P. Grey, ACS Appl. Mater. Interfaces 2022, 14, 13206.

[55]

Z. Ruff, C. Xu, C. P. Grey, J. Electrochem. Soc. 2021, 168, 060518.

[56]

E. Björklund, C. Xu, W. M. Dose, C. G. Sole, P. K. Thakur, T.-L. Lee, M. F. L. De Volder, C. P. Grey, R. S. Weatherup, Chem. Mater. 2022, 34, 2034.

[57]

J. A. Gilbert, I. A. Shkrob, D. P. Abraham, J. Electrochem. Soc. 2017, 164, A389.

[58]

R. Jung, F. Linsenmann, R. Thomas, J. Wandt, S. Solchenbach, F. Maglia, C. Stinner, M. Tromp, H. A. Gasteiger, J. Electrochem. Soc. 2019, 166, A378.

[59]

C. Zhan, T. Wu, J. Lu, K. Amine, Energy Environ. Sci. 2018, 11, 243.

[60]

J. Xu, S.-L. Chou, Q.-f. Gu, H.-K. Liu, S.-X. Dou, J. Power Sources 2013, 225, 172.

[61]

K. K. Neelisetty, J. Stetina, J. Vondruška, M. Trenz, T. Kazda, M. Hrouzek, P. Wandrol, Microsc. Microanal. 2021, 27, 2508.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/