Enhanced Stability and Efficiency in Ge–Pb-Based Perovskite Solar Cells through PCCMAI-Induced Ge Defect Passivation

Shahriar Mohammadi , L. Jan Anton Koster , Sakineh Akbari Nia

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70052

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70052 DOI: 10.1002/eem2.70052
RESEARCH ARTICLE

Enhanced Stability and Efficiency in Ge–Pb-Based Perovskite Solar Cells through PCCMAI-Induced Ge Defect Passivation

Author information +
History +
PDF

Abstract

The advantages of the Ge–Pb-based perovskite solar cells (PSCs), such as low bandgap, have made this kind of PSC popular nowadays. Nevertheless, they have adverse properties that need to be fixed, such as short lifetime and fast crystallization process, which causes Ge defects. In this research, the passivation of Ge defects by using pyridinium chlorochromate methylamine iodine (PCCMAI) in the perovskite film (PF) structure is investigated. By using PCCMAI, the PSC's performance enhancement and surface morphology optimization were observed. It is determined that by the reaction of PCCMAI in the perovskite solvent, a coordination polydentate is formed in Ge–Pb mixed perovskite, and it results in the improvement of crystallization quality and electron transfer. After PCCMAI treatment of the Ge–Pb-based perovskite film, the measured power conversion efficiency (PCE) indicates that the performance of the fabricated PSC increased from 16.85% to 20.14%. Moreover, fabricated PSCs show an increment in stability after PCCMAI treatment.

Keywords

passivation of surface defect / perovskite solar cell / pyridinium chlorochromate / surface morphology

Cite this article

Download citation ▾
Shahriar Mohammadi, L. Jan Anton Koster, Sakineh Akbari Nia. Enhanced Stability and Efficiency in Ge–Pb-Based Perovskite Solar Cells through PCCMAI-Induced Ge Defect Passivation. Energy & Environmental Materials, 2025, 8(6): e70052 DOI:10.1002/eem2.70052

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Azmi, D. S. Utomo, B. Vishal, S. Zhumagali, P. Dally, A. M. Risqi, A. Prasetio, E. Ugur, F. Cao, I. F. Imran, A. A. Said, A. R. Pininti, A. S. Subbiah, E. Aydin, C. Xiao, S. I. Seok, S. de Wolf, Nature 2024, 628, 93.

[2]

S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, F. Ren, Q. Zhou, H. Raza, Y. Gao, Y. Ji, S. Li, H. Li, L. Qiu, W. Huang, Y. Zhao, B. Xu, Z. Liu, H. J. Snaith, N.-G. Park, W. Chen, Nature 2024, 632, 536.

[3]

S. Mohammadi, S. A. Nia, B. D. Bruce, G. Riazi, Mater. Res. Bull. 2025, 181, 113077.

[4]

J. Yi, G. Zhang, H. Yu, H. Yan, Nat. Rev. Mater. 2024, 9, 46.

[5]

S. Mohammadi, S. Akbari Nia, D. Abbaszadeh, Sci. Rep. 2024, 14, 24254.

[6]

S. Teale, M. Degani, B. Chen, E. H. Sargent, G. Grancini, Nat. Energy 2024, 9, 779.

[7]

C. Liu, Y. Yang, H. Chen, I. Spanopoulos, A. S. R. Bati, I. W. Gilley, J. Chen, A. Maxwell, B. Vishal, R. P. Reynolds, T. E. Wiggins, Z. Wang, C. Huang, J. Fletcher, Y. Liu, L. X. Chen, S. de Wolf, B. Chen, D. Zheng, T. J. Marks, A. Facchetti, E. H. Sargent, M. G. Kanatzidis, Nature 2024, 633, 359.

[8]

M. S. A. Azizman, A. W. Azhari, D. S. C. Halin, N. Ibrahim, S. Sepeai, N. A. Ludin, M. N. M. Nor, L. N. Ho, Synth. Met. 2023, 299, 117475.

[9]

S. Lee, G. M. Kim, T. Miyasaka, D.-I. Won, S. Y. Oh, Chem. Eng. J. 2024, 488, 150817.

[10]

F. Meng, B. Yu, Q. Zhang, Y. Cui, S. Tan, J. Shi, L. Gu, D. Li, Q. Meng, C. Nan, Adv. Energy Mater. 2022, 12, 2103690.

[11]

J. Liu, X. Meng, K. Liu, Z. Chen, X. Ma, S. Liu, W. Fan, H. Liu, Z. Cheng, J. Wu, Sol. Energy 2023, 259, 398.

[12]

N. Ito, M. A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, J. Phys. Chem. Lett. 2018, 9, 1682.

[13]

T. Minemoto, Y. Kawano, T. Nishimura, Q. Shen, K. Yoshino, S. Iikubo, S. Hayase, J. Chantana, Sol. Energy Mater. Sol. Cells 2020, 206, 110268.

[14]

U. U. Rehman, U. Ur Rehman, K. Ul Sahar, E. Hussain, C.-M. Wang, Sol. Energy 2024, 277, 112752.

[15]

M. S. Uddin, M. A. Al Mashud, G. F. I. Toki, R. Pandey, M. Zulfiqar, O. Saidani, K. Chandran, M. Ouladsmane, M. K. Hossain, J. Opt. 2023, 4, 3726.

[16]

K. Saranya, B. Janarthanan, J. Mol. Struct. 2023, 1287, 135663.

[17]

Z. Zhao, M. Sun, Y. Ji, K. Mao, Z. Huang, C. Yuan, Y. Yang, H. Ding, Y. Yang, Y. Li, W. Chen, J. Zhu, J. Wei, J. Xu, W. Paritmongkol, A. Abate, Z. Xiao, L. He, Q. Hu, Nano Lett. 2024, 24, 5513.

[18]

M. H. Miah, N.–. E. Ashrafi, M. B. Rahman, M. Aminul Islam, M. U. Khandaker, Phys. Scr. 2024, 99, 065969.

[19]

M. S. A. Azizman, M. S. Adli Azizman, A. W. Azhari, N. Ibrahim, D. S. Che Halin, S. Sepeai, N. A. Ludin, M. N. Md Nor, L. N. Ho, Heliyon 2024, 10, e29676.

[20]

J. Lu, S. Chen, H. Wang, L. Qiu, C. Wu, W. Qian, Z. Wang, K. Huang, J. Wu, H. Chen, Y. Gao, Sol. Energy Mater. Sol. Cells 2024, 271, 112883.

[21]

S. Ghosh, T. K. Ghosh, Struct. Chem. 2024, 35, 1777.

[22]

F. Shayeganfar, R. Shahsavari, Sci. Rep. 2021, 11, 15111.

[23]

S. Xu, L. Yang, X. Zhang, L. Wang, W. Sun, Energies 2024, 17, 2671.

[24]

S. Hu, P. Hou, C. Duan, S. Zeng, Y. Dou, X. Deng, Y. Zhang, J. Lu, Y.-B. Cheng, Y. Peng, Z. Ku, Chem. Eng. J. 2024, 499, 156259.

[25]

C. Gao, H. Zhang, F. Qiao, H. Huang, D. Zhang, D. Ding, D. du, J. Liang, J. Bao, H. Liu, W. Shen, Nano Energy 2023, 116, 108765.

[26]

F. Bella, P. Renzi, C. Cavallo, C. Gerbaldi, Chem. Eur. J. 2018, 24, 12183.

[27]

A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, Adv. Energy Mater. 2019, 9, 1901489.

[28]

J. Zhang, S. Tang, M. Zhu, Z. Li, Z. Cheng, S. Xiang, Z. Zhang, Energy Environ. Mater. 2024, 7, e12696.

[29]

J.-H. Park, J. Kim, J. H. Kim, D. W. Kim, C. H. Ryoo, O. K. Kwon, C. Lee, J. E. Kwon, S. Y. Park, ACS Appl. Energy Mater. 2020, 4, 259.

[30]

X. Deng, Z. Cao, Y. Yuan, M. Oliver Lam Chee, L. Xie, A. Wang, Y. Xiang, T. Li, P. Dong, L. Ding, F. Hao, Coord. Chem. Rev. 2020, 420, 213408.

[31]

B. Zhang, F. Guo, J. Xue, L. Yang, Y. Zhao, M. Ge, Q. Cai, B. Liu, Z. Xie, D. Chen, H. Lu, R. Zhang, Y. Zheng, Sci. Rep. 2017, 7, 17695.

[32]

Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni, B. Chen, Y. Deng, S. N. Habisreutinger, X. Chen, K. Wang, J. Zhao, P. N. Rudd, J. J. Berry, M. C. Beard, J. Huang, Nat. Commun. 2019, 10, 4498.

[33]

G. M. Kim, A. Ishii, S. Öz, T. Miyasaka, Adv. Energy Mater. 2020, 10, 1903299.

[34]

M. Koopmans, V. M. Le Corre, L. J. A. Koster, J. Open Source Softw. 2022, 7, 3727.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/