Enhancing Quantum Dot-Sensitized Solar Cells With Au-Ag Nanoparticles and DLC: A Synergistic Approach

Maryam Hekmat , Azizollah Shafiekhani , Fatemeh Rostamian

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70051

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70051 DOI: 10.1002/eem2.70051
RESEARCH ARTICLE

Enhancing Quantum Dot-Sensitized Solar Cells With Au-Ag Nanoparticles and DLC: A Synergistic Approach

Author information +
History +
PDF

Abstract

This study enhances quantum dot-sensitized solar cells (QDSSCs) with a photoanode containing gold and silver nanoparticles in a diamond-like carbon (DLC) matrix. The nanoparticles exhibit a synergistic effect, increasing the photoanode's response to visible light through localized surface plasmon resonance (LSPR). Simulations show that these nanoparticles improve charge transfer and cell efficiency by creating additional electron traps. DLC acts as a shield, protecting silver nanoparticles from corrosion, thus enhancing cell stability. The modified photoanode significantly increases the short-circuit current density compared to the standard photoanode, confirming the simulation results and demonstrating the potential for improved solar cell performance.

Keywords

Au-Ag NPs / CdS QDs / DLC / hot-electron / LSPR / PCE / QDSSCs / trapping states

Cite this article

Download citation ▾
Maryam Hekmat, Azizollah Shafiekhani, Fatemeh Rostamian. Enhancing Quantum Dot-Sensitized Solar Cells With Au-Ag Nanoparticles and DLC: A Synergistic Approach. Energy & Environmental Materials, 2025, 8(6): e70051 DOI:10.1002/eem2.70051

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. J. Moghadam, Z. Shariatinia, Mater. Res. Bull. 2018, 98, 121.

[2]

A. J. Nozik, Chem. Phys. Lett. 2008, 457, 3.

[3]

A. Badawi, N. Al-Hosiny, S. Abdallah, Superlat. Microstr. 2015, 81, 88.

[4]

X. Chen, M. S. S. Chen, Xiaobo , S. S. Mao, Chem. Rev. 2007, 107, 2891.

[5]

T. L. Thompson, J. T. Yates, Chem. Rev. 2006, 106, 4428.

[6]

U. I. Gaya, A. H. Abdullah, J Photochem Photobiol C: Photochem Rev 2008, 9(1), 1.

[7]

M. D. Hernández-Alonso, F. Fresno, S. Suárez, J. M. Coronado, Energy Environ. Sci. 2009, 2, 1231.

[8]

M. Lili, C. Liu, J. Jia, X. Zhou, Y. Lin, J. Mater. Chem. A 2013, 1, 8353.

[9]

Y. Choi, M. Seol, W. Kim, K. Yong, J. Phys. Chem. C 2014, 118, 5664.

[10]

J. Yang, X. Zhong, J. Mater. Chem. A 2016, 4, 16553.

[11]

A. Tubtimtae, M. W. Lee, G. J. Wang, J. Power Sources 2011, 196, 6603.

[12]

Z. Pan, I. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, J. Bisquert, J. Am. Chem. Soc. 2014, 136, 9203.

[13]

S. Yan, P. Zhao, X. Zhao, L. Qua, X. Lai, J. Mater. Chem. A 2015, 3, 21922.

[14]

V. González-Pedro, C. Sima, G. Marzari, P. P. Boix, S. Giménez, Q. Shen, T. Dittrich, I. Mora-Seró, Phys. Chem. Chem. Phys. 2013, 15, 13835.

[15]

N. Parsi-Benehkohal, V. González-Pedro, P. P. Boix, S. Chavhan, R. Tena-Zaera, G. P. Demopoulos, I. Mora-Seró, Phys. Chem. C 2012, 116, 16391.

[16]

Y. Zhong, H. Zhang, D. Pan, L. Wang, X. Zhong, J. Energy Chem. 2015, 24, 722.

[17]

P. R. Pudasaini, A. A. Ayon, Phys. Status Solidi (a) 2012, 209, 1475.

[18]

C. Hägglund, S. P. Apell, J. Phys. Chem. Lett. 2012, 3, 1275.

[19]

J. N. Munday, H. A. Atwater, Nano Lett. 2011, 11, 2195.

[20]

L. Wen, F. Sun, Q. Chen, Appl. Phys. Lett. 2014, 104, 151106.

[21]

S. A. Maier, Plasmonics: fundamentals and applications, Vol. 1, Springer, New York, NY 2007.

[22]

S. F. Wang, K. K. Rao, T. C. Yang, H. P. Wang, J. Alloys Compd. 2011, 509, 1969.

[23]

G. Lazar, I. Lazar, J. Non-Cryst. Solids 2003, 331, 70.

[24]

M. Hekmat, F. Rostamian, A. Shafiekhani, M. Khabir, Semicond. Sci. Technol. 2020, 35, 45019.

[25]

M. Hekmat, F. Rostamian, A. Shafiekhani, Mater. Sci. Semicond. Process. 2021, 128, 105782.

[26]

A. Kowsar, M. Billah, S. Dey, S. C. Debnath, S. Yeakin, S. F. U. Farhad, 2019 2nd Inter. Conf. Innov. Engin. Tech. (ICIET), IEEE, Dhaka, Bangladesh 2019, pp. 1–6.

[27]

S. Wenger, M. Schmid, G. Rothenberger, A. Gentsch, M. Gratzel, J. O. Schumacher, J. Phys. Chem. C 2011, 115, 10218.

[28]

H. Y. Chen, L. Lin, X. Y. Yu, K. Q. Qiu, X. Y. , D. B. Kuang, C. Y. Su, Electrochim. Acta 2013, 92, 117.

[29]

H. Pang, X. Wang, G. Zhang, H. Chen, G. Lv, S. Yang, Appl. Surf. Sci. 2010, 256, 6403.

[30]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, Laser Photonics Rev. 2010, 4, 795.

[31]

K. L. Göeken, V. Subramaniam, R. Gill, Phys. Chem. Chem. Phys. 2015, 17, 422.

[32]

A. Mahajan, R. K. Bedi, S. Kumar, V. Saxena, A. Singh, D. K. Aswal, RSC Adv. 2016, 6, 48064.

[33]

A. K. B. M. Arof, M. H. B. A. Buraidah, in Plasmonic (Ed: T. Gric), Intech Open, London, UK 2018, pp. 223–241.

[34]

J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, E. M. Barea, E. Palomares, Inorg. Chim. Acta 2008, 361, 684.

[35]

M. Jankulovska, T. Berger, S. S. Wong, R. Gómez, T. Lana-Villarreal, ChemPhysChem 2012, 13, 3008.

[36]

L. Bertoluzzi, I. Herraiz-Cardona, R. Gottesman, A. Zaban, J. Bisquert, J. Phys. Chem. Lett. 2014, 5, 689.

[37]

G. Rothenberger, D. Fitzmaurice, M. Graetzel, J. Phys. Chem. 1992, 96, 5983.

[38]

J. Yun, S. H. Hwang, J. Jang, ACS Appl. Mater. Interfaces 2015, 7, 2055.

[39]

Z. Chen, T. G. Deutsch, H. N. Dinh, K. Domen, K. Emery, A. J. Forman, N. Gaillard, R. Garland, C. Heske, T. F. Jaramillo, in Photoelectrochemical Water Splitting (Eds: Z. Chen, H. N. Dinh, E. Miller), Springer, New York, NY 2013, pp. 17–44.

[40]

V. Bhullar, I. Singh, V. Sharma, A. Mahajan, Sol. Energy 2024, 267, 112248.

[41]

F. Doosthosseini, A. Behjat, S. Hashemizadeh, N. Torabi, J. Nanophotonics 2015, 9, 93092.

[42]

A. Badawi, N. Y. Mostafa, N. M. Al-Hosiny, A. Merazga, A. M. Albaradi, F. Abdel-Wahab, A. A. Atta, Mod. Phys. Lett. B 2018, 32, 1850172.

[43]

S.-J. Lin, K.-C. Lee, J.-L. Wu, J.-Y. Wu, Appl. Phys. Lett. 2011, 99, 43306.

[44]

I. Zarazúa, D. Esparza, T. López-Luke, A. Ceja-Fdez, J. Reyes-Gomez, I. Mora-Seró, E. de la Rosa, Electrochim. Acta 2016, 188, 710.

[45]

G. Zhu, F. Su, T. Lv, L. Pan, Z. Sun, Nanoscale Res. Lett. 2010, 5, 1749.

[46]

M. Eskandari, V. Ahmadi, M. Yousefi rad, S. Kohnehpoushi, Phys. E Low-Dimens. Syst. Nanostruct. 2015, 68, 202.

[47]

S. Barzegari, A. R. Amani-Ghadim, F. Bayat, Sol. Energy 2024, 277, 112656.

[48]

C.-H. Chang, Y.-L. Lee, Appl. Phys. Lett. 2007, 91, 53503.

[49]

G. Zhu, T. Xu, T. Lv, L. Pan, Q. Zhao, Z. Sun, J. Electroanal. Chem. 2011, 650, 248.

[50]

P. Christopher, D. B. Ingram, S. Linic, J. Phys. Chem. C 2010, 114, 9173.

[51]

S. P. Lim, Y. S. Lim, A. Pandikumar, H. N. Lim, Y. H. Ng, R. Ramaraj, D. C. S. Bien, O. K. Abou-Zied, N. M. Huang, Phys. Chem. Chem. Phys. 2017, 19, 1395.

[52]

J. Li, X. Chen, N. Ai, J. Hao, Q. Chen, S. Strauf, Y. Shi, Chem. Phys. Lett. 2011, 514, 141.

[53]

S. J. Lin, K. C. Lee, J. L. Wu, J. Y. Wu, Appl. Phys. Lett. 2011, 99, 148.

[54]

Y. P. Lin, S. Y. Lin, Y. C. Lee, Y. W. Chen-Yang, J. Mater. Chem. A 2013, 1, 9875.

[55]

M. B. Ahmad, K. Shameli, M. Darroudi, W. M. Yunus, N. A. Ibrahim, Am. J. Appl. Sci. 2009, 6, 1909.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/